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CHAPTER 1 

The Z80 

At the heart of every computer there is what is known as a Central Processing 
Unit. Microcomputers, as you might guess employ a microprocessor as their 
CPU. The purpose of the CPU is to translate programs into actions. The 
Amstrad employs a Z80 microprocessor, which is an eight-bit chip with 16-bit 
addressing. It runs at a clock speed of 4 Mhz. Don't worry if you do not 
understand these terms now, they will be explained later. 

Binary —  a CPU's numbering system 
Humans normally represent numbers with symbols that can have values 
between zero and nine. Once a column reaches its capacity, this decimal 
notation uses further columns, each having ten times the value of the previous 
one to its right. Computers are limited to two symbols, 0 and 1, which are 
represented electrically by on or off. This numbering system is known as 
binary, with each column having twice the value of one to its right. Hence, 
11111111 represents 1 plus 1*2 plus 1*4 plus 1*8 plus 1*16 plus 1*32 plus 1*64 
plus 1*128, which works out as 255 decimal. 
Using eight columns, or bits, a binary numbering system allows us, or a 
computer to represent values in the range 0 to 255 in decimal. This eight-bit 
number is known as a byte. 

Data bus 
The Z80 is an eight-bit CPU which handles data one byte at a time, so that its 
basic unit of data is limited to the range 0-255. Of course larger values can be 
handled but this involves using more than one byte, and so must be carried 
out sequentially. In order to communicate with other circuits there are eight 
lines from the CPU which transmit and receive data, known collectively as the 
data bus. 

Memory and the address bus 
Memory storage for values, data and programs is essential if a computer is to 
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function usefully. There are two basic types of memory, both of which are 
found in your Amstrad computer: ROM (Read Only Memory), from which 
the CPU can obtain the eight-bit values it requires, and RAM (Random 
Access Memory), which the CPU can use to store byte values, and retrieve 
them at some time in the future. Each memory location has its own address, 
so that it, and only it, responds when that address is sent out by the CPU. 
In order to generate these addresses, the Z80 is equipped with 16 pins, which 
make up the address bus and allow a 16-bit number to be created. Thus the 
normal limit to the number of memory locations that the Z80 can address is 
that which can be represnted by two consecutive bytes: 256*256 or 65536. one 
`K' of memory bytes is not, as you might think, 1000, but the largest number 
that can be represented by 10 bits, 1024. This explains why you will read of 
the Z80 being capable of addressing 64K bytes of memory; 65336 is 1024*64. 

Hexadecimal numbering 
People use decimal numbers and computers use binary, but most writers of 
machine code programs also use hexadecimal. This numbering system works 
to a base value of 16, with five extra symbols, the letters A - F being used to 
represent the decimal values 10 to 15. The convenience of this system may not 
be obvious immediately, particularly as most people have trouble familiaris-
ing themselves with these new numbers, but in fact it enables machine code to 
be written in a very compact form — a sort of shorthand. 
The advantage of the hexadecimal numbering system is that it bears a close 
relationship with binary, without being as cumbersome to write down: a 
single byte can be represented as two hex digits — FF equals 255; if you come 
across a number with three hex digits you know immediately that it will need 
up to 12 bits to represent it. Locomotive BASIC is equipped with HEX$ and 
BIN$ functions to allow you to convert numbers easily. 

Two's complement 
The convention of `two's complement' arithmetic allows negative numbers to 
be represented. For the system to work, we must use the same size of binary 
number (i.e. same number of bits) calculations. The most significant bit is 
used to indicate the sign. In the case of eight-bit two's complement numbers, 
bit 7 is used to indicate whether a number is positive or negative and numbers 
can be expressed in the range —128 to +127. If bit 7 is zero, the number is 
positive and the low seven bits give it a value in the range 0 to 127. If bit 7 is 1, 
however, the number is negative and can be calculated in the following 
manner. Invert each bit of the number (this process is known as 
complementing), then subtract 1. The number remaining, with a minus sign in 
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front, is the value of the byte. 
The usefulness of this convention can be seen when we add two numbers 
together. Adding a negative number to a positive one will result in the correct 
answer. A simple example is the addition of —1 (11111111 bin) to +1 
(00000001). Add the two together and the eight-bit result is 00000000 bin —
the 1 carried into the ninth bit is lost and the answer is zero. 
Appendix II is a table of eight-bit two's complement values. The system is 
also used for 16-bit values; when FFFF hex is —1, for example. 

The clock. 
The speed at which the Z80 performs each step of its operations is dictated by 
the clock. Your Amstrad contains an oscillator circuit which sends pulses to 
the CPU; each pulse triggers the next stage in whatever function is currently 
being performed. For example, if the processor is attempting to fetch a byte 
from a memory location, it will send out the address and other signals, and 
then wait for another clock pulse before reading the data in. The speed of the 
clock allows other circuits such as RAM to keep up with the processor. 

External connections 
A Z80 processor has 40 terminals or pins. Some of these are used to feed the 
CPU the clock pulses and voltage supply (+5 volts) which brings it to life; 
other pins send and receive various controlling signals, such as read and write. 
The address and data buses are connected to the Z80 through two further sets 
of pins — DO to D7 for the data bus and AO to A15 for the address bus. 
Internally, the Z80 can be divided into three areas — the Control Unit, the 
Arithmetic and Logic Unit (ALU) and a number of registers. 
The control unit translates an instruction into the correct sequence of signals 
in order to perform the required task and it has associated with it a register, or 
local memory cell; this register holds the machine code instruction on which 
the control unit is currently working. 
The ALU is capable of performing simple addition, subtraction and logic 
operations between two values sent to it along internal data paths. 
The registers are a collection of local memory cells, each capable of storing 
eight-bit or 16-bit numbers. Their contents can be sent to the outside world, 
other registers or the ALU, and they can be loaded with data from the same 
places. 

The registers 
The most important of the registers is the Program Counter, or PC: this is a 
16-bit register which is used to keep track of the program that the CPU is 
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running. The program information is fetched, one byte at a time, from 
memory, and the PC holds the address of the next byte which will need to be 
read in. Another 16-bit register with a special purpose is the Stack Pointer, or 
SP. This holds the address of an area of memory which is used as storage 
space by certain instructions. (See the POP, PUSH and CALL instructions 
for a description of its uses.) The main group of registers for use by the 
programmer, called the general purpose registers, falls into two sections. The 
Z80 has 14 eight-bit registers but at any one time only one set of seven 
registers can be used: these are called A (or the accumulator), B, C, D, E, H 
and L. The other seven registers share the same names, but they are known as 
the alternative register set. A pair of exchange instructions is all that is 
required to bring the alternative set of registers into operation. The resident 
operating system and BASIC language make extensive use of the alternative 
set of registers, so for most applications you will not want to have access to 
them. 
If you do wish to make use of them, however, special arrangements must be 
made, even in pure machine code programs. 
The accumulator, A, is the eight-bit register which is used for many of the 
arithmetical operations, and all the local ones. The remaining registers in the 
general purpose group can be used as single eight-bit storage registers, with 
the advantage of speed over using external memory locations. They may also 
be combined into 16-bit registers for the handling of address information and 
other double byte data. When paired off in such a manner, they are known as 
BC, DE and HL. In general the second register of a pair holds the least 
significant byte of data: if we stored 256 (100 hex) in the register pair HL, H 
would hold 1 (representing 256*1), and L zero. The letters of HL help us to 
remember this; the Z80 was developed from a chip, the 8080, in which H 
stood for high and L stood for low. A very special eight-bit register is 
sometimes paired with A: it is called F, or the flags register when combined 
the pair is called AF. Each individual bit of F is itself a flag, and is used by the 
ALU and control unit to make a note of particular ocurrences. Some 
instructions have no effect on the flags at all, others affect them to varying 
degrees. For example, after every ADD operation that is carried out, one bit 
of the F register, known as the C or CARRY flag, will be set to 1 if the 
addition resulted in an overflow; this will occur if the answer was too big to 
store in the register that was to receive the result. 
The flags, in the order of their bit number in the F register, behave as follows: 

Carry flag: used to store the most significant bit of arithmetic operations. 
Logic operations reset it to zero. It is also involved in some of the shift and 
rotate instructions. 
Subtract flag: mainly for CPU rather than programmer use. Set each time a 
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subtract is carried out, reset by an add. 
Parity/overflow flag: a dual purpose flag. After certain instructions, such as 
logic or rotate operations, it reflects the parity of the result. Parity is set if all 
the bits of the answer add up to an even value. This flag is used in a similar 
manner to the carry flag by certain block move and search operations. 
Bit 3: this is undefined. 
Auxiliary carry flag: reflects any carry from bit 3 to 4 during an arithmetic 
instruction. Its main purpose is for the handling of BCD (binary coded 
decimal) numbers. 
Bit 5: also undefined. 
Zero flag: set when any arithmetic or logic operation results in zero. It is 
cleared if the result is not zero. 
Sign flag: after an arithmetic or logical operation it reflects the state of the 
most significant bit of the result. 
These flags are very important to the programmer; they offer the opportunity 
to carry out conditional operations. 
In the above description I have talked of the flags being set (value 1) or reset 
(value 0). It is worth mentioning.other ways used to describe the state of the 
flags. The term 'clear' is often used to mean that a flag has a zero value. 
Alternatively, logic terms are sometimes used: 'true' implies that a flag is set 
and 'false' that it is reset. You will meet such phrases as 'if carry is clear' 
(meaning the carry flag has the value 0) and even 'when Z is true' (the zero 
flag has the value 1). 
Note that there is also an 'alternative flags register. For the purposes of the 
exchange instructions, it is paired with the alternative A register. 

Index registers 
Two 16-bit registers (which do not have alternatives) are provided by the Z80 
to allow an indexing facility. These registers, IX and IY, have a number of 
instructions which enable them to be used as memory pointers. When loaded 
with an address, they can have an offset (or displacement) in the range —128 
to +127 added to them and the result is then used as an address to reference 
memory. 

Special purpose registers 
There are two eight-bit registers which you will rarely use. The I (or interrupt 
vector) register is for use with an interrupt mode not employed by your 
computer. Interrupts are discussed later in this chapter. The Refresh register 
is really part of the Z80 hardware. In an operation completely transparent to 
the programmer, the CPU puts out signals to refresh dynamic memory chips 
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after each fetch of an instruction. To which addresses it sends these signals 
depends on the contents of R, and this is continually being incremented by 
the control unit. The only use which a programmer can normally make of R is 
as a random number generator: it is unlikely that a program will run at a 
speed which is exactly related to the frequency of the update of R, so it can be 
used to generate random events. 

Instructions 
The instructions which the Z80 receives come from memory locations. When 
first switched on and reset (the application of a signal to one pin of the Z80 to 
bring it to life), the first thing that the control unit does is to fetch the first 
instruction from memory location zero. This takes the form of a byte which is 
placed in the instruction register and acted upon. It may be that further bytes 
are required to complete the instruction — Z80 machine codes can consist of 
between one and four bytes, which are fetched from consecutive memory 
locations. The PC is incremented by one after each fetch. When the first 
instruction has been obeyed, the next one is taken from the memory location 
of which the address is in the PC. 
Before we look at the instructions that are available on a Z80 microprocessor, 
let me say a few words about the following section of the book. It lists all the 
types of instructions; operations that are not mentioned are therefore not 
possible. The shorthand description, or mnemonic, is sometimes given in a 
generalised form with the following letters 

r General purpose eight-bit register. 
(A, B, C, D, E, H and L.) 

rp 16-bit register pair. Always BC, DE and HL. The text will indicate if 
AF, IX and IY are also included. 

addr A 16-bit value for use as an address. 
dis Eight-bit displacement value. 
index Means that an address is derived from the contents of either IX or 

IY plus a displacement. 

The use of brackets around a register pair or value means that the address 
contained in the pair or given as data is to be used to fetch the actual value 
from. LD A,(HL) takes the value stored at the address held in HL and stores 
it in A. In this case it is said that HL 'points' to the data, or that HL is 'being 
used as a pointer'. 
While the mnemonics are listed here, the operation codes (shortened to 'op 
codes') are given in Appendix 1; these are the actual values that when 
encountered as instructions by the CPU cause the effect described by the 
mnemonic. 
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Load instructions 
Instructions fall into a number of categories. The most frequently used group 
are loading instructions; these never affect the flags. 
LD r,r: load any general-purpose eight-bit register (including A) with the 
contents of any other. 
LD r,data: load the byte from the next memory location into any 
general-purpose eight-bit register. 
LD r,(HL): take the contents of the memory location of which the address is 
contained in HL and place them into a general-purpose eight-bit register. 
LD r,(IX+dis): add IX and the displacement (which is taken as a signed 
number), and load the value stored at the resulting address into the 
general-purpose eight-bit register. The `two's complement' convention is used 
for the displacement, or offset, so FF is —1, FE —2 and so on to 80 hex, which 
is —128. 
The A register has additional op codes: 
LD A,(rp): the address of the data to be loaded into A can be taken from BC 
or DE as well as from HL, IX+dis or IY+dis. 
LD A,(addr): the address of the data is supplied as two additional bytes, low 
byte first, in the next two bytes of program memory: e.g. LD A,(2040) takes 
the form 3A 40 20. This type of addressing is known as DIRECT. 
It is also possible to transfer data between A and the I or the R register with 
these instructions: 
LD A,I — LD A,R — LD I,A — LD R,A. 
The register pairs BC, DE, HL, IX and IY can be loaded in the following 
manner: 
LD rp,data: two bytes of data, low byte first, are taken from the next two 
program memory locations. 
LD rp,(addr): the address supplied is used in the same manner as LD 
A,(addr) to find the value to be loaded into the low half of the pair; the high 
register is loaded with the byte from (addr+1). 
All the instructions which fetched a value from an address (but not program 
memory) — have their complements, these instructions load the memory 
location specified with the contents of a register or register pair: 
LD (HL),r — LD (IX+dis),r — LD (IY+dis),r. 
LD (rp),A — LD (addr),A. 
LD (addr),rp. 
It is also possible to load immediate data from program memory into a 
location of which the address is held by certain pairs: 
LD (HL) data — LD (IX+dis),data — LD (IY+dis),data. 
The final loading operation affects the stack pointer: 
LD SP,HL — LD SP,IX — LD SP,IY 
Note that loading HL, IX or IY with the contents of SP is not possible. 
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Exchange instructions 
Other instructions which have similar loading effects are the exchange 
instructions, which swop over the values of two locations: 
EX (SP),HL: swop the two bytes at (SP) and SP+1) with those in HL. Also 
possible are EX (SP),IX and EX (SP),IY. 
EX DE,HL: swops the contents of DE and HL. The other exchange 
instructions bring the alternative register set into operation — EX2 AF,AF' 
for the AF pair, and EXX, for the remainder. No other exchange operations 
are possible. 

Set and Reset 
Two instructions load single bits into specified locations. SET loads a 1, RES 
(reset) loads a 0. Any bit can be specified, such as SET 4,B, forcing bit 4 of B 
to the value 1. 
SET bit,r: any G.P. register. 
RES bit,r: any G.P. register. 
SET bit,(HL), SET bit,(IX+dis), SET bit,(IY+dis): these set the specified 
bit in the memory location pointed to by HL or the index registers plus 
displacement. 
RES bit,(HL), RES bit,(IX+dis), RES bit,(IY+dis): as above but they clear 
the bit to zero. 
Another instruction which can be considered as a loading code is SCF. This 
sets the carry flag to 1. 
Many other instructions have elements of loading involved. 
Stack operations load and retrieve data and addresses from an area of RAM 
pointed to by the SP register. A stack is a LIFO storage method, meaning 
Last In First Out, and it is worth repeating an often used analogy. Imagine 
placing playing cards in a pile, or stack, on the table. You can only place cards 
on the top of the pile, and only retrieve cards by picking up the top card first. 
Therefore, if you put down the ace of spades and then three more cards, you 
must remove those three before you can rescue the ace. 
Data must come from a 16-bit source, and is placed on the stack low byte first; 
the SP always points to the current 'top' of the stack. The one complication 
with Z80 stack operations is that they work from high to low addresses; as 
more data is put in the stack area, the SP points to lower addresses. Placing 
and retrieving data from the stack uses instructions called PUSH and POP. 
PUSH rp: SP is decremented and the contents of the high half of the pair 
placed at the resulting address. SP is decremented again, and the low half of 
the pair's contents saved at this new address. A can be pushed onto the stack 
in conjunction with F — PUSH AF. 
POP rp: the reverse process to PUSH, so that POP retrieves the information 
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which was last PUSHed. The value pointed to by SP is placed into the low half 
of the pair: SP is incremented, and the new value now pointed to is moved to 
the high half of the pair. Finally, SP is incremented again. 

Jumps 
We can load the PC with a new value; this has a major effect on the running of 
a program. By loading the address of another section of code into PC we can 
cause a diversion in the normally linear flow of a program. For this reason, 
loading the PC is given the name JUMP: 
JP addr: the new address from which to continue execution is given in the 
next two program bytes (low byte first) 
JP (HL) — JP (IX) — JP (IY) — the contents of the specified rp are loaded 
into the PC. 
JP addr has a number of variants which test one of the flags before performing 
the load: if the flag tested does not meet the condition required then the load 
does not take place. These variants allow the flow of the program to be 
affected on a conditional basis, in much the same way as IF A=0 THEN 
GOTO 100 would do in BASIC. The possibilities are: 
JP NZ: jump if the zero flag is 0. 
JP Z: jump if the zero flag is 1. 
JP NC, JP C: jump if the carry flag is 0 or 1 respectively. 
JP PO, JP PE: jump if the parity flag is 0 or 1 respectively. 
JP P, JP M: jump if the sign flag is positive or negative. 
While JP needs a 16-bit address, another instruction, jump relative, adds an 
eight-bit offset to the value already in the PC. This means we do not need to 
know the address of the location to which we wish to jump, just how many 
bytes it is from the address already in the PC. Jumps to an address lower than 
the current value of the PC are achieved with negative offsets, in the same 
manner as those used in the indexing instruction. JR is only possible over a 
range —128 to +127. 
JR dis: jumps the specified number of program bytes. Note that JR FE (18 
FE) will form an endless loop, because FE is —2 in two's complement. 
Conditional JRs are also possible, but with a limited number of tests: 
JR NZ, JR Z — tests the zero flag. 
JR NC, JR C — tests the carry flag. 

One sophisticated jumping instruction allows program loops to be performed 
quickly: 
DJNZ dis: decrement the B register, and if it does not reach zero, add the 
displacement to the PC. 
CALL addr: similar to the BASIC GOSUB command. The current value in 
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the PC is pushed onto the stack and the PC loaded with the supplied address. 
Conditional CALLs are possible: 
CALL Z, CALL NZ, CALL C, CALL NC, CALL PE, CALL PO, CALL N 
and CALL M. 
RET: used at the end of a subroutine, it POPs the address onto the stack and 
puts it into the PC. 
Returns may also be conditional, with the same conditions as CALL. 

The Accumulator 
The accumulator, A, is the register which is used to receive the results of 
eight-bit arithmetic. 
ADD A,data: the data immediately following in program memory is added to 
A. 
ADD A,r: the contents of the specified G.P. register are added to A. 
ADD A,(HL): HL contains the address of the byte to be added to A. 
ADD A,(IX+dis) ADD A,(IY+dis): versions of ADD using the index 
registers. 

Add with carry performs in the same manner as ADD, but includes the carry 
bit in the sum: 
ADC A,data, ADC A,r, ADC A,(HL), ADC A,(index). 

Subtract is only available as an eight-bit operation on A. 
SUB data, SUB r, SUB (HL), SUB (index). 
Subtract with carry includes the carry bit in the calculation: 
SBC data, SBC r, SBC (HL), SBC (index). 
A limited number of 16-bit operations are possible, using HL as the recipient 
of the result: 
ADD HL,rp: rp may be BC, DE, HL or SP. 
ADC HL,rp: rp as ADD. 
SBC HL,rp: rp as ADD. 

It is also possible to ADD to the index registers: 
ADD IX,rp: rp may be BC, DE, IX or SP. 
ADD IY,rp: rp may be BC, DE, IY OR SP. 
All of the above arithmetic operations have an effect on all of the flags. 

Increment and decrement 
A task that is very common in machine code programs is the addition or 
subtraction of 1 from a value. To facilitate this there are some special 
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operations: 
DEC r: subract 1 from the specified eight-bit G.P. register. 
INC r: add 1 to the specified eight-bit G.P. register. 
DEC (HL): decrement the contents of memory location (HL). 
DEC (index): index register versions of DEC (HL). 
INC (HL): increment the contents of memory location (HL). 
INC (index): index register version of INC (HL). 
These instructions affect all the flags except the carry. 
16-bit versions of the above are available: 
INC rp, DEC rp — rp may be BC, DE, HL, IX, IY or SP. 
NOTE — These do not affect any flags. 

Logical instructions 
The next group of instruction are known as logical, or Boolean operations. 
AND is a logical operation that obeys the following rule: if the first bit AND 
the second bit are 1, then the result is 1. Otherwise, the result is 0. The 
operation is carried out bit by bit between the A register and the specified 
byte, with resulting bits placed in A. 
AND data: AND the byte in the following byte of program memory with A, 
placing the result in A. 
AND r: any G.P. can be used instead of immediate data. 
AND (HL): the byte is fetched from location (HL). 
AND (index): indexed version of AND (HL). 

OR is a similar logical operation, with the following rule: if either the bit 
being compared in the accumulator or in the specified byte is 1, then the result 
is 1. If both bits are zero, the result is zero. 
OR data, OR r, OR (HL), OR (index). 

Exclusive OR (XOR) is a little more complex: if both bits are the same (either 
both 1 or both 0) then the result is 0, otherwise the result is 1. XOR can be 
thought of as 'not the same': 
XOR data, XOR r, XOR (HL), XOR (index) 
With logical operations the carry flag is always cleared, the auxiliary carry flag 
set, and the other flags are affected as normal. 
Two instructions which perform operations on the A register without the 
need for another byte are: 
CPL — complement A. All the bits are inverted. The auxiliary carry is set, 
the other flags left alone. 
NEG — the same as subtracting the contents of A from zero and placing the 
result back into A. All flags are altered. 
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The carry flag has its own logic operation: 
CCF — complement the carry flag. 

Testing 
Testing can be thought of as a subdivision of logic — 'If A is the same as the 
byte then set Z'. 
CP r: the contents of the specified register are subtracted from the contents of 
A. The result is discarded, but the flags are set according to the result. 
CP (HL): HL provides the address of the byte to be compared with A. 
CP (index): indexed addressing version of CP (HL). 
For testing individual bits of a target byte we can use BIT: 
BIT bit,r: place the complement of the specified bit from the specified register 
into the Z flag. 
BIT bit,(HL): HL provides the address of the byte containing the bit to be 
tested. 
BIT bit,(index): indexed version of BIT (HL). 
The S and P/O flags act in an unpredictable way; auxiliary carry is set and 
carry is unaffected. 

Rotate and shift 
There is a group of instructions which have a surprising number of uses; their 
task is to rotate and shift the bits in an eight-bit value: 
RR r (Rotate Right): the rightmost bit (bit 0) is placed in the carry. Bit 1 is 
transferred to bit 0, 2 to 1 and so on. The old value of the carry is put into bit 
7. This can be performed on any G.P. register. 
RR (HL), RR (index): versions of RR that operate on a byte in memory of 
which the address is specified by HL or the index registers plus displacement. 
RRA: a rotate right instruction specifically for the A register. It is only one 
byte long, and has a different effect on the flags. 
RRC R (Rotate Right Circular): similar to RR, but the original value of bit 0 
is placed into bit 7 instead of the old carry value. The carry flag also takes on 
the value of the original bit 0. 
RRC (HL), RRC (index): memory versions of RRC. 
RRCA: accumulator only RRC instruction. 
All the above rotate instructions can be performed in the opposite direction; 
bit 7 into the carry, 6 into 7 and so on. These are Rotate Left instructions: 
RL r, RL (HL), RL (index), RLA. 
RLC r, RLC (HL), RLC (index), RLCA. 

Shift instructions are a variant of rotate: 
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SRA r (Shift Right Arithmetic): bit 0 is placed into carry, 1 into 0, etc. The 
value in bit 7 is transferred to bit 6 but also retained in bit 7. 
SRA (HL), SRA (index): memory versions. 
SLA r: bit 7 is placed into carry, the others move up a place, and bit 0 is set to 
zero. 
SLA (HL), SLA (index): memory versions. 
SRL r (Shift Right Logical): as SRA, but bit 7 is replaced with a zero. 
SRL (HL), SRL (index): memory versions. 
The manner in which most of the rotate and shift instructions affect the flags is 
as follows: 
Carry is determined by whatever is moved into it: auxiliary carry is cleared. 
The other flags are all determined according to the result of the operation. 
The accumulator-only codes, RRA, RLA, RRCA and RLCA have no affect 
on most of the flags; carry is set by the bit moved into it and auxiliary carry is 
cleared. 

Binary coded decimal 
Two special rotate instructions are designed to deal with binary coded 
decimal, or BCD varies. Binary coded decimal is a convention that is used to 
store two values, each in the range 0-9, in one byte. Each decimal value 
occupies either the upper or lower four bits of a byte. To assist the handling of 
such numbers, there are instructions for rotating a byte four bits at a time: 
RRD (Rotate Right Decimal): a byte which is pointed to by HL is the target 
byte of this instruction. Its lower four bits are moved into the lower four bits 
of A. The upper four bits of byte (HL) are moved to its lower half, and the 
original contents of the bottom half of A replace them. 
RLD (Rotate Left Decimal): the upper bits of (HL) are moved to A. The 
lower bits move up to take their place, and they are replaced with the old low 
bits of A. 
The flags are affected as with a normal rotate, but carry is unaffected. 
Although it is not a rotate instruction, it is worth mentioning an instruction 
that facilitates BCD addition and subtraction: 
DAA (Decimal Accumulator Adjust): if used immediately after an addition 
or subtraction, DAA alters the contents of the A register to convert it to a 
BCD result. If A had contained 55 hex and the instruction ADD A,16 hex 
had been performed, the normal result, 6B, would be modified by DAA to 
become 71 hex. This instruction uses the state of carry and auxiliary carry to 
arrive at the correct answer. All flags are affected. 
The Z80 is equipped with a terminal called the I/O pin. It can be used in 
conjunction with the address bus and external hardware to provide input and 
output ports. These are read from and written to in the same manner as 
memory locations. They offer a separate I/O map for the addition of 
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hardware devices such as video display chips, printer ports and the like. The 
advantage of using I/O ports for hardware is that they do not use up space in 
the memory map, and the decoding circuitry is actually made simpler by the 
use of the I/O pin. To send and receive data via the I/O map, certain 
instructions are provided: 
IN A,port: the port number is a byte of data following in program memory. 
This is placed on the low eight bits of the address bus, the I/O pin asserted, 
and a read signal sent out. The data which is then presented on the data bus is 
loaded into the accumulator. 
IN r,(C): C contains the port number for this instruction, which loads data 
from a port into the specified general purpose register. 
OUT A,port: the method of sending data to a port. The port number is 
provided as immediate data in program memory. 
OUT r,(C): allows data in general purpose registers to be sent to port number 
(C). 
An interesting feature of the Z80 is brought to light by the Amstrad. When an 
OUT (C) or IN (C) instruction is executed, the value of the C register is 
placed on the low eight address lines for decoding as the port number. At the 
same time, the value held in B is placed on the high eight address lines. The 
Amstrad hardware actually decodes the upper half of the address bus to find 
its port numbers, so it is B that must be loaded with the number of the port 
that you wish to address — the value in C is ignored. We must still call the 
instructions by the names OUT (C) and IN (C) unfortunately; these are the 
standard Zilog mnemonics which are observed by assembler and monitor 
programs. 

More complex instructions 
Certain, rather specialised, tasks have been speeded up on the Z80 by the 
inclusion in the design of some powerful, if complex, instructions. The most 
commonly used of these are the block move instructions, intended to assist 
the transfer of data from one area of memory to another: 
LDI (Load and Increment): load the memory location of which the address is 
(DE) with a byte of data of which the address is (HL). .After the operation, 
the memory pointers DE and HL are incremented; BC, which is intended for 
use as a counter, is decremented. 
LDD (Load and Decrement): load the memory location of which the address 
is (DE) with a byte of data from address (HL). After this operation, 
decrement the registers BC, DE and HL. 
LDIR (Load, Increment and Repeat): an LDI is performed, and if BC has not 
become zero, the operation is repeated until it does. The effect of this 
instruction is to load a block of bytes, the length of which is contained in BC 
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from an area of memory beginning at (HL) into another area beginning at 
(DE). 
LDDR (Load, Decrement and Repeat): similar to LDIR, but, because the 
memory pointers are decremented, they begin by pointing to the last byte to 
be moved and the operation works 'top down'. Both repeating codes are 
available so that it is possible to transfer data between blocks of memory that 
overlap. 
Most flags are not affected by the LD block instructions; auxiliary carry is 
always cleared, and the P/0 flag is set if BC has not been decremented to 
zero. 
Other instructions in this category are: 
CPI (Compare and Increment): A holds a value which is compared with (HL), 
setting the Z flag accordingly. HL is then incremented. BC, used as a counter, 
is decremented. 
CPD (Compare and Decrement): as CPI but after the comparison, HL is 
decremented as well as BC. 
CPIR: CPI followed by a repeat if BC is not zero and a match between (HL) 
and A has not been detected by the Z flag. 
CPDR: decrement version of CPIR. 
The carry flag is unaffected, but S, Z, and AC are all altered by the 
comparison, and the P/0 flag is set if BC reaches zero. 
INI: input the byte from I/O port (C), and store it at address (HL). Increment 
HL and decrement B only, thus leaving C unchanged. 
IND: INI with HL being decremented. 
INIR: repeating version of INI; it continues until B reaches zero. 
INDR: repeating version of IND. 
OUTI: as INI, but the byte from (HL) is written to port (C). 
OUTD: decrement version of OUTI. 
OTIR, OTDR: repeating versions. 
The I/O instructions leave most of the flags undefined; carry is unaffected, 
and Z set according to the value read or written. 
Certain memory locations at low addresses have a special significance to the 
Z80 microprocessor, because a group of instructions named RST (restart) 
make them very useful. RSTs are only one byte in length but replace the 
action of a three-byte CALL instruction. Software writers can place the 
beginning of often-used routines in these special addresses and therefore save 
space in their programs. There are eight RST instructions and on the Amstrad 
RST 30 can patched for your own purposes: 
RST 0, 8, 10, 18, 20, 28, 30, 38 — the values indicate the hex address that is to 
be CALLed. 
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Interrupts 
The Z80 CPU has an interrupt system which allows hardware signals to halt 
the processing of the current program and divert attention to another routine. 
It is intended to allow the servicing at regular intervals of external devices that 
need to be looked at, such as the keyboard. Two forms are implemented: 
maskable interrupts can be treated in a number of different ways and software 
instructions can disable them. Non-maskable interrupts work via a separate 
pin, and, as their name implies, cannot be ignored. NMIs cause the current 
value of the PC to be saved on the stack; they disable all other interrupts and 
force a jump to the memory location 66 hex. There is one instruction which 
works with non-maskable interrupts: 

RETN: returns from a NMI subroutine, and sets the interrupt hardware to 
allow further interrupts. 

Maskable interrupts, triggered by a signal to the CPU's INT pin, can be 
handled in one of three ways, determined by the use of a software instruction: 

IM 0: requires a code to be sent back to the CPU on the data bus; the code is 
expected to be one of the RST instructions. Mode 0 is not used by the 
Amstrad. 
IM 1: when an interrupt is received, an RST 38 is performed: this is the mode 
in which the Amstrad runs. 
IM 2: the PC is pushed to the stack, the low eight bits present on the data bus 
are combined with the contents of the I register. This address is then used as a 
pointer to fetch an address to which control is then passed. Mode 2 is not used 
by the Amstrad. 
Three commands are associated with maskable interrupts: 
RETI: returns from a maskable interrupt routine. 
DI: causes maskable interrupts to be ignored, or disabled. 
EI: re-enables interrupts. 

Two final commands 
NOP: this code (00) does nothing; it simply occupies space in program 
memory. It is surprisingly useful when de-bugging programs. 
HALT: when this code is encountered, the CPU stops processing 
instructions. It requires a RESET or interrupt to get the processor going. 

The above descriptions cover all the instructions available on the Z80 
processor. They are only building blocks for more complex operations: you 
will come across some of them time and time again; others are so rarely used 
that they are unfamiliar even to the most experienced programmer. 
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CHAPTER 2 

Writing Code 

Writing machine code programs involves assembling the building blocks of 
the available instructions into a program. Carrying out any major task will 
require a great many instructions, although there are ways in which we can 
cut down on the number needed. 

Subroutines 
Subroutines will be familiar to BASIC programmers. Z80 machine code is 
equipped with CALL and RET instructions: these allow us to organize a 
section of code which performs a particular task, and then CALL it as a 
subroutine from any part of the main program, or indeed from within another 
subroutine. This has two main advantages: we do not need to duplicate a 
sequence of instructions to achieve the same result, thus saving the number of 
bytes needed to store the program, and secondly, subroutines simplify the 
structure of a program, making it easier to write, understand and correct. 
One disadvantage is that you need to know exactly where in memory the 
subroutine is stored. The actual address must be included in the operation 
code for CALL, which is CD hex followed by the low and high bytes of the 
subroutine's address. 

Loops 
The use of reiteration is an important part of high-level computer languages. 
The BASIC FOR . . . NEXT loop command, the WHILE . . . WEND of 
Locomotive BASIC and other structures allows us to repeat sections of 
program, with altered variables, until certain conditions are met. In machine 
code, the conditional JUMP instruction, combined with operations to test a 
variable (or more than one variable) can be used to continue or terminate a 
section of machine code that performs a loop. Unlike subroutines, 
position-independent loops can be written, which means that code for one 
position will work if moved to another area of memory. To achieve this, the 
JR instruction, its conditional variations, and the DJNZ operation must be 
used. These limit the flags that can be tested, and restrict the size of the loop, 
although neither of these limitations is insurmountable. 
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Planning ahead 
The first step in writing a machine code routine is the drawing of a flow 
diagram. Even if you have managed to write programs in BASIC without the 
aid of a flow diagram, please don't be tempted to do without them for 
anything other than the simplest of machine code tasks. The initial diagram 
need not be complete, tidy or well laid out; it need not be comprehensible to 
anyone but yourself; but you will find that some form of pre-planning is 
essential if you are to write efficient machine code. If the program is complex, 
begin by writing in plain English, and don't worry about the nuts and bolts of 
the program until you have an overall picture of what you wish to do. 
Then you begin to sketch out how you might handle the trickier sections. 
Flow diagrams of these will help you to decide which registers to use, what 
subroutines are necessary, and what kind of data storage you will need to set 
up in RAM. This is also the best stage for considering alternative methods of 
solving problems; a quick look through the instruction set could remind you 
that, for example, you may be able to use the CPI command for a searching 
operation. If your task involves the use of many variable values, you should 
consider where you are going to keep them — it may be possible to keep them 
in registers and on the stack. If not, is it worth setting up an area of memory 
and pointing an index register to your new variables area? 
Now the more pedestrian sections of the routine can be fitted around the 
special requirements with an eye towards the subroutines and data areas for 
which you have already determined a need. I find it difficult to resist the 
temptation to start coding the program at this point. If you do have patience, 
a tidy, properly laid-out version of your flow diagram will be a good 
investment in the long term, particularly if you annotate it with information 
such as register use, stack contents and the like. Don't be disappointed if your 
near drawing ends up having to be heavily modified, though. Trial and error, 
and the correcting of mistakes, are major parts of writing machine code. 
When your routine is finally entered, debugged and running, have another 
look. There is almost always room for some improvement in a machine code 
routine, even if it is just the trimming of a couple of bytes or a few machine 
cycles. In general, the less bytes a routine occupies, the faster it will run, 
unless you over-use loops and subroutines. 

An example routine —  INPUT 
In order to demonstrate some of the principles involved, let's look at a simple 
example routine, which could have practical use as part of a larger program. 
Called INPUT, its task is to collect up to 16 characters typed in from the 
keyboard and place them in an area of memory. The letters that are input by 
the user are also printed to the screen, and hitting the ENTER key will cause 
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the routine to finish. Let's rough out a flow diagram (see Figure 2.1). 
Now to set about turning the theory into code. The two things that are going 
to be tricky are fetching characters from the keyboard and printing to the 
screen. Although it is quite possible, we do not actually need to write these 
ourselves — the Amstrad already contains subroutines in its firmware ROM 
which we can exploit. Both these tasks can be dealt with as subroutine 
CALLS. 

Figure 2.1 

Set Character Count to 16 

Set Storage Address to start of storage area 

	 Get a keypress from the keyboard 

Load RAM at Storage Address with keypress 

Let Storage Address equal Storage Address plus one 

I

s the keypress CNTC:t? 

no 	yes 
1 

Print character to Screen 	Return, routine over 

Let Character Count equal Character count minus one 

Is Character Count zero? 

no 	yes 

Jump hack to Lonpl —LOOP2 Get a keypress 

Is it ENTER? 
1 1 
no 	yes 

1 
Jump hack to LOOP2 	Return, routine over 
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There is a certain amount of jargon used when describing the use of 
subroutines. You can 'send' data to the subroutine in the registers: For 
example, 'A sent holding key number' means that you must load A with a 
value for the subroutine's information before calling it. Information is 
`returned' from a subroutine in the same manner: 'result returned in HL' 
means that the subroutine has placed the answer in the HL pair. The flags are 
often used to pass information: 'carry returned false if the key is not pressed' 
is a good example of this. If a register is 'corrupted' it will not necessarily 
return with the same value it held when the subroutine was called. The 
routine for fetching a keypress, named KM WAIT CHAR, is reached by 
calling address BB06; on return the A register contains the ASCII code of the 
character that was typed: the other registers are not affected. 
To print a character to the screen, the easiest method is to use subroutine 
TXT OUTPUT, address BBSA. This prints the character, the code of which 
is sent to it in the A register, without affecting any other registers. 
The next stage is to choose which registers to use. As we want to collect 16 
characters, the character count will begin at 16 decimal, or 10 hex. It is 
unlikely that further modifications of INPUT would require a count of more 
than 255, so we can use an eight-bit register. If we use B as the character 
count register, then we can employ the DJNZ instruction to combine the 
decrementing of the character count and testing for zero stages of the flow 
diagram. 
We require the routine to store the ASCII codes collected into an area of 
RAM. In this case we might as well choose the area immediately after the.  
program. The choice of which 16-bit register to use as a memory pointer to 
this area is between DE or HL. We are already using B, so BC is unavailable; 
and there is little point in involving either IX or IY as they use extra time and 
bytes. DE can only be used as a pointer when using A, so HL will give us the 
most flexibility. 

Writing the source code 
Let's begin writing the routine. We will use labels to mark important RAM 
locations, and work out the actual adresses at a later stage. The first task is to 
set up the variables we are going to use: 

INPUT LD B,10 ; INPUT is the label for the start of the 
routine. 

LD HL,DATA ; We will know the address of DATA only 
when the routine is coded. 

The beginning of LOOP1 comes next: 
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LOOP1: CALL BB06 
LD (HL),A 
INC HL 
CP OD 
RET Z 
CALL BB5A 
DJNZ LOOP1 

Get a keypress into A. 
Store ASCII code in RAM. 
Point HL to next location. 
Compare A with ASCII code for ENTER. 
If they match, return from routine. 
Print character. 
Decrement B; if it does not become zero 
jump back to LOOP1. 

The instructions for the second loop: 

LOOP2: CALL I3B06 ; Get keypress into A. 
CP OD ; Compare with ENTER. 
JR NZ,LOOP2 ; If they don't match, jump back. 
RET ; The routine is complete. 

Assembling the object code 
The routine is writen, but the words must now be turned into op codes. 
Looking up the codes and writing them down in sequence is a simple enough 
job, except that we don't as yet know the offsets for the relative jumps and 
the address of DATA. These can be written down as symbols. We will, for 
the sake of argument, begin our routine at RAM location A600. 

Addresses Hex Codes 
A600 — A607 06 10 21 ?? ?? 06 BB 
A608 — A6OF 77 23 FE OD C8 5A BB 
A610 — A617 10 ?? CD 06 FE OD 20 
A618 — A619 ?? C9 (Followed by data area.) 

We can now fill in the question marks. Having written out the codes and 
addresses we can work out that the data area will start at address A61A, so we 
load HL with that. All 16-bit data is stored low byte first, so the instruction 
LD HL,DATA becomes 21 1A A6, contained in addresses A602 to A604. 
The first relative jump instruction, DJNZ LOOP1, occupies locations A610 
and A611, the offset data being required for address A611. The jump should 
take the program back to address A605. Always remember that just before a 
jump is performed, the PC will be pointing to the byte after the offset (having 
just fetched the offset and been incremented). In this case it will hold the 
value A612. From this you can deduce that JR O.will have no effect. Counting 
backwards in hexadecimal is prone to errors: an offset of FE (-2) would take 
us back to A610, FD (-3) to A60F, and so on. Try counting back to the 
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location we wish to reach (A605): the answer for the offset should be —13 or 
F3. To calculate this value, subtract the PC from the target address; if you use 
the computer, the HEX$ function and & prefix will make this task easy. The 
second relative jump, in addresses A617 and A618 (JR NZ,LOOP2) can be 
worked out in the same maner. Have a go at this — the answer you should 
arrive at is given in Program 2.1. 

Loading the routine 
How do we get the bytes of machine code into memory? There are a number 
of methods, the simplest and most tedious of which is to set up a loop in 
BASIC that INPUTs the bytes and then POKEs them into place. Program 2.1 
is a little more sophisticated; the machine code instructions are held in DATA 
statements, thereby allowing them to be corrected if wrong. We will improve 
this method at a later stage to check for errors, but for now, the program is a 
quick way to test our short routine. Enter the listing and save it on tape. Now 
RUN it — after a short delay the machine code will come into operation. 

Program 2.1 
100 REM *** 	******** 	**** 	 
101 REM ** 	INPUT Demo 	** 
102 REm *******AAAk**AAAAAA****kl.*** 

110 MEMORY &A5FF 
120 RESTORE 
130 FOR x=&A600 TO &A619 
140 READ B$:POKE x,VAL("&"+b$) 
150 NEXT x 
160 CLS: PRINT "Press a key to run code" 
170 IF INKEY$="" THEN 170 
180 CLS: CALL &A600 
190 PRINT "Code has finished" 
200 STOP 
210 REM *******************AAAA***** 

211 REM ** 	INPUT Data 	** 

213 REM ** (CHECK CAREFULLY!) ** 
214 REM ********************'A******* 
220 DATA 06,10,21,1A,AB,CD,06,BB 
230 DATA 77,23,FE,OD,C8,CD,5A,BB 
240 DATA 10,F3,CD,06,BB,FE,OD,20 
250 DATA F9,C9 
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Testing INPUT 
INPUT behaves almost as if you were still in BASIC, except that the ESC key 
will do nothing. You might like to PEEK the data area to check that the 
characters have been stored. Notice that there is an inconsistency: even if you 
press ENTER the next printing occurs immediately after the 16th character. 
Here is a task for you — modify INPUT so that the print position is always 
moved to the start of the next line. This should be simple enough, but there is 
one possible pitfall that you may encounter (no clues!). You could also write a 
better version of INPUT in which the DEL key will function. You will find a 
list of the control codes and their functions in Chapter 9 of your Amstrad 
manual. The ASCII value of DEL is 7F. 
The manual assembly of machine code is not only a tedious affair, it is very 
prone to errors. A good assembler program allows you to type in instructions 
using their mnemonics, the assembler names. You can edit, move and delete 
lilies as if the instructions were a BASIC program, use special instructions to 
give values to labels, determine where the code will go, and even read in 
mnemonics from tape. When you are happy with the source code, as the 
collection of mnemonics is called, the program can turn it into machine code 
very quickly, the result being the object code. This avoids the possibility of 
human error and saves a lot of time, not to mention paper. If you enter a 
routine that will not work, the assembler program will, in most cases, blindly 
follow your instructions, but at least all those relative jumps will be right! 
A monitor program allows you to examine and alter the coments of RAM. It 
is possible to get monitors that can also disassemble object code back into 
mnemonics and allow you to test routines one step at a time, showing all the 
register contents, the state of the flags and the important areas of memory 
after each instruction. With such a program, tracking down mistakes is made 
as easy as it can be. 
This book was written with the aid of the Amsoft programs GENA3 and 
MONA3, the components of the Hisoft Devpac system. Although complex to 
learn to use, and not cheap, Devpac is an excellent, professional piece of 
software. The Code Machine from Picturesque is recommended for being 
easy to use, while in some respects it is even more powerful than Devpac. By 
all means consider other packages — but remember that more powerful 
the program, the more useful it will be in the long run. 
Despite what I have said, you won't need an assembler to use and understand 
the routines in this book. However, when you decide to create your own 
programs, let the computer do the tedious work for you. 

Two things to avoid when writing machine code 
One habit of inexperienced machine code programmers is to select areas of 
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RAM for' use as variables that are within the program area, perhaps 
sandwiched between two subroutines. Try to keep all your variables in one, 
or possibly two, blocks before or after the program, rather than scattered 
about the routine. This tidy housekeeping will save many headaches when 
debugging your programs, and if you decide to use indexed addressing, you 
will be able to access all your variables easily. 
Never be tempted to write self-modifying machine code. This form of 
program alters instructions within itself to cause different events to occur. 
Finding a fault in such a program can be extremely difficult, and you can 
never be sure quite what state the routine is in. There are some occasions 
when programmers can justify the use of self-modifying code — (relocating 
routines, program protection or lack of RAM), but never use the method 
unless you have to. 
Both the above 'don'ts' will be brought home to you if you ever have a 
program that a software house decides to publish — on a ROM cartridge! 
Even if this seems unlikely to happen, it is good programing practice to 
consider your program area as if it were ROM. 
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CHAPTER 3 

The Hardware and Firmware 

Understanding the environment in which the CPU works is as important as 
understanding machine code itself. In order for the CPU to function, for us to 
be able to communicate with it, and for it to be able to respond in some 
meaningful way, many additional components are required. 

Memory devices 
The most important part of the computer, after the CPU, is the memory in 
which programs and data are stored. There are two types of memory used. 
Random access memory (RAM) can have its contents changed by the CPU, 
but 'forgets' the information it holds when the power supply is turned off. The 
Amstrad is equipped with 64K of RAM. Addresses 0000 to BFFF are used for 
general storage purposes. The 16K of RAM between C000 and FFFF is 
normally used as the video display memory area; pixel information is stored 
here, and used by other circuits to generate the video picture sent to the 
monitor. 
Read only memory (ROM) cannot have its contents altered, but retains its 
data in the absence of a power supply. Therefore, it is used to store the 
built-in routines that run the computer. One area of ROM has addresses in 
the range 0000 to 3FFF; this is the firmware ROM, containing routines for 
handling screen, keyboard, sound, cassette and general house-keeping duties. 
A second ROM uses addresses C000 to FFFF. This is where the Locomotive 
BASIC interpreter resides: it can be considered as one, complex, machine 
code program that allows us to write and use BASIC programs. The BASIC 
machine code itself makes much use of the Firmware ROM. Models of the 
Amstrad that had disk drives fitted are equipped with further ROM memory. 

The gate array 
We have encountered a conflict: you can see from the above description that 
RAM and ROM share the same addresses. This means that circuitry is 
required to decide which type of memory should respond in a particular 
circumstance. Write operations are no problem — there is no point in trying 
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to send information to one of the ROMs — but hardware is required to 
enable the CPU to select its source for a read operation. This is contained in 
the gate array, an integrated circuit built especially for Amstrad. 

Video display 
The gate array chip handles a number of other functions, most of which are 
concerned with generating the video signals, which it does in conjunction with 
the cathode ray tube controller chip (CRT), a 6845 device. Between these two 
chips, which can both be controlled by the I/O operations of the CPU, the 
video display RAM is read and converted to a suitable analogue video signal. 
There are certain time constraints involved in this process, and in order for 
the gate array to access the video RAM directly, the machine cycle of the Z80 
are manipulated so that a clash does not occur. The effect is completely 
transparent to the user — all that happens is that the CPU is slowed down 
slightly, running at an effective clock rate of 3.3Mhz, rather than 4Mhz. 

Input and output 
Other input and output circuitry, such as the cassette recorder interface, 
printer port, keyboard and sound chip, are buffered from the CPU by a 
general purpose input/output chip, the 8255 Parallel Peripheral Interface 
(PPI). This boasts a number of ports, not to be confused with the simple I/O 
port system of the CPU. Because these ports are separate from the 
computer's data bus we can make them 'latching', that is to say, set a bit of a 
particular port high and leave it in that state. For example, the signal that 
switches on the cassette motor stays high until a further signal is sent to the 
port to reset it. Port A sends and receives data from the sound chip; port B is 
a read only channel which detects signals from the cassette, printer port, and 
video circuits; while port C sends information to the cassette, control signals 
to the sound chip, and scanning signals to the keyboard. On machines fitted 
with a disk drive, a separate controller chip is provided. 

Sound generation 
The Prograinmable Sound Generator (PSG), a chip called the AY-3-8912, is 
a sophisticated device that can generate a wide range of sounds. Once sent the 
right information it will continue to produce sounds without further attention 
from the CPU. It also boasts a couple of I/O ports of its own, which are used 
to help implement the keyboard arrangement. 
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The keyboard 
The keys and joystick connections are arranged as ten rows of eight keys. In 
order to read a row, a four-bit selection signal is sent from port C to the 
keyboard, which is decoded in order to select one of the ten rows. A byte of 
data, fed from the PSG I/O port, via the PPI, can then be read into the CPU. 
Each bit of the byte corresponds to a particular key in the row, and a 
decoding process is able to determine which key is pressed. The matrix 
arrangement is not too good at handling multiple key presses because the 
rows can interact, but the system is a cost effective way of producing a 
keyboard. 
The Z80 can control all these devices through its I/O ports in combination 
with control signals in the same manner as it addresses memory locations. 
Using the devices is not a simple affair, but fortunately for us, the routines in 
the lower ROM make the task much less formidable. 

Firmware 
The Amstrad is an excellent machine on which to write machine code routines 
because not only are the routines that drive the hardware available, but also 
they are fully documented. The locations of the routines, which are published 
in the Firmware Specification, can be relied upon. Calls to the operating 
system pass through a table of JP instructions which are loaded into RAM 
when the system initialises itself. This table is called a jumpblock, while the 
operation is known as vectoring. By implementing this concept, Amstrad can 
re-write large chunks of the operating system without altering the firmware 
addresses. The practical outcome of this is that we can use the available ROM 
routines, and need not use low-level hardware driving routines of our own 
invention. 
There is another reason for vectoring the firmware routines through a 
jumpblock — it is located in an area of RAM that does not share addresses 
with a ROM. Whenever a firmware routine is called, either from the BASIC 
ROM, the firmware ROM itself, or a machine code routine in RAM, which 
perhaps shares addresses with one of the ROMs, the process is the same. The 
RST addresses (see Chapter 1) hold the same information in RAM and 
ROM, and one of the RSTs (8), is coded so as to allow the ROM to be 
enabled. Before returning from the RST, the state of the ROMs is restored to 
what it was before the RST occurred. By placing the jumpblock in an area of 
RAM where it can always be reached, and providing software in the RST 
addresses which allows us to save and later to restore the current ROM 
enabling state, the routines can be called from anywhere in the memory map. 
When a CALL is made from BASIC to a machine code routine, it is safe to 
assume that both ROMs are disabled. You can leave them in that condition, 
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even if you use the firmware. When you finally return to BASIC, you may 
leave all the normal registers in whatever state you wish, with exception, of 
course, of the stack pointer. As for the alternative register set, I mentioned 
earlier that it is best left alone because the firmware routines make use of it. 
Even if you do not use the firmware, the computer normally has interrupts 
enabled in order to keep its timers up to date, and these interrupts will use the 
firmware. If you really do want to use the alternative registers, it will be 
necessary to disable the interrupts, or alter the interrupt routines themselves. 
Although the people behind Locomotive Software are more secretive about 
their BASIC than their operating system, machine code can be used to add 
extended commands. How this can be done is demonstrated in Chapter 9. 
We have used two firmware routines already, and many more will be put to 
use in later chapters. Wherever I introduce a firmware routine, as well as the 
address I will give the name and details of which registers it corrupts. Many 
other useful routines will be explained, but it is beyond the scope of this book 
to list every single routine, particularly those with very specialised functions. 
Important calls to the firmware that are not listed in detail elsewhere in the 
book are given below, divided, as is the jumpblock, into a number of sections. 

Key Manager 
BBOO INITIALISE 

BB06 WAIT CHAR 

BB09 READ CHAR 

BB18 WAIT KEY 

BB1B READ KEY 

BB1E TEST KEY 
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Sets up keyboard. No entry conditions. Cor-
rupts AF, BC, DE, HL. 
Waits for a character from the keyboard or an 
expansion string. (Expansion strings are part of 
the firmware provisions of the operating 
system; the DEF KEY command uses them to 
translate key tokens into strings.) No entry 
conditions. Character returned in A. Other 
registers preserved. 
As WAIT CHAR, but does not wait. If no 
character is available, carry is returned false. 
As WAIT CHAR, but expansion tokens are 
returned rather than a character from the 
relevan expansion string. 
Returns a keypress without waiting: as with 
WAIT KEY, expansion tokens are returned. 
Sees is a particular key is pressed. The key 
number is passed in A (see the manual for 
numbers). On return, if the specified key is 
pressed, Z will be clear: if CTRL is pressed, bit 
7 of C will be set: and if SHIFT is pressed, bit 5 
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will be set. Also corrupts A, HL. 
BB21 GET STATE Fetches the caps and shift lock states. L returns 

the shift and H the caps states, with 00 being 
off, FF on. Corrupts AF. 

BB24 GET JOY Returns a value relating to both joysticks. No 
entry conditions. H and A hold the state of 
joystick 0, and L the state of joystick 1, where 
bits 0 to 5 relate to up, down, left, right, F2 and 
Fl respectively. If the button is pressed, the bit 
is set. Other registers are preserved. 

Further Key Manager calls are listed in Chapter 5. 

Text VDU 
BB4E INITIALISE Sets up the character screen. No entry condi- 

tions. Corrupts AF, BC, DE, HL. 
BB5A OUTPUT Sends the character or control code in A to the 

screen. A study of Chapter 9 of the manual will 
show that control codes allow you to set text 
colours, move the print position, and much 
more. Preserves all registers. 

BB5D WR CHAR Prints a character as output, but control codes 
are not obeyed: a series of symbols is printed 
instead. 

BB60 RD CHAR Reads the character at the current cursor 
position on the screen. Returns carry false if 
the character is unrecognisable, otherwise 
carry true and the ASCII code of the character 
in A. Preserves other registers. 

BBB4 STR SELECT Changes the stream number on which the TXT 
calls operate. The new stream number is sent 
to the routine in A, and the previous stream 
number is returned from the routine in A. HL 
is corrupted. 

The Graphics section of the firmware is detailed in Chapter 7. 

Screen routines 
BBFF INITIALISE Sets up all the screen variables to their default 

values. Corrupts AF, BC, DE, HL. 
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BCOE SET MODE Changes the screen mode to the value sent in 
A. Corrupts AF, BC, DE, HL. 

BC4D HW ROLL Scrolls the entire screen up or down one 
character line. If B is sent to the routine 
holding zero, the scroll will be downwards: A 
must hold the encoded ink for the new line. 
Corrupts AF, BC, DE, HL. 

BC50 SW ROLL Scrolls any specified area of the screen by 
copying. B holds the direction (0=down), A 
the encoded ink for the new line, while the 
area is defined as physical character co-ords — 
right, bottom, left and top in D, E, H and L 
respectively. Corrupts AF, BC, DE, HL. 

Other screen routines are discussed in relation to the FILL routine in 
Chapter 8. 

Cassette Manager routines 
BB65 INITIALISE Sets up the Cassette manager: corrupts AF, 

BC, DE, HL. 
BC6B NOISY Controls the generation of cassette prompts. If 

A is sent as zero, the prompts are enabled, 
otherwise they are suppressed. Other registers 
preserved. 

To write a binary file to cassette, the following routines should be used: 
BC8C OUT OPEN Opens the file and sets up the header. B should 

contain the length of the filename, HL its 
address. If O.K., returns carry=1, zero=0. 

BC98 OUT DIRECT Sends data to the cassette. HL should hold the 
first address, DE the length, BC the 'call' 
address that a RUN command would enter a 
machine code routine at, and A the file type (2 
for binary). If successful, returns carry=1, 
zero=0. 

BC8F OUT CLOSE Close the file, ensuring the whole block has 
been sent. Returns carry=1, zero=0 if O.K. 

To read the file back in, a 2K buffer needs to be reserved. The following 
routines should be used: 
BC77 IN OPEN Opens the file and fetches the first 2K into the 

buffer. B and HL should be set up for a 
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filename as OUT OPEN, unless B=0, in which 
case the first file is read. DE must point to the 
buffer area. If carry=1, zero=0 returned, the 
file was successfully opened. Other informa-
tion returned: HL=header address, DE=data 
location, BC=length and A=file type; all are 
taken from tape. 

BC83 IN DIRECT Loads the file. HL should contain the address 
to place the file. If O.K., carry=1, zero=0. 

BC7A IN CLOSE Closes the file. Returns carry true if O.K. 

Note that if you have a disk drive, the cassette calls will normally be 
overwritten with routines that use the disk drive — all the above should work 
with disks. 

Sound 
BCA7 RESET Clears all queues and silences the sound chip. 

Corrupts AF, BC, DE and HL. 

Using the sound manager is a complex affair, and of specialised interest. The 
simplest way to make a beep is to print a CHR$(7), the BELL control code, 
with TXT OUTPUT (BB5A). 

Kernel Routines 
These are mainly concerned with interrupts and events. Two routines which 
may be of general use are listed below. 
BDOD TIME PLEASE Returns the current value of the timer in 

DEHL, a four-byte count in units of 1/300th of 
a second. Preserves other registers. Note that 
the timer is interrupt-driven: disabling the 
interrupts will stop the count. 

BD10 TIME SET Sets the timer count to the value held in 
DEHL. Corrupts AF. 

The Machine pack 
BD 19 WAIT Waits for a video flyback pulse. Useful for 

FLYBACK synchronising graphics with the video signal 
thereby avoiding flickering effects. 

BD2B PRINT CHAR Sends the value in A to the Centronics printer 
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port. Bit 7 of A is ignored. On return, if 
carry=1 then all went OK. If carry=0 then the 
routine 'timed out': i.e. the printer was busy 
for over 0.4 secs. A is corrupted. 

BD34 SOUND REG Sets a register of the AY-38912 PSG. A should 
hold the register number, C the data. Corrupts 
AF, BC. Useful for talking directly to the PSG. 

If you intend writing a routine that will reside in ROM, or wish to make use of 
interrupts, you will need to study the full firmware specification with care. For 
our purposes, however, the above information, plus that given in later 
chapters, allows you to use most of the Amstrad's hardware with confidence. 
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CHAPTER 4 

Machine Code Number Sorting 

The main advantages of keeping data in a computer are the speed with which 
a specific item can be found, and the ability to sort items into a particular 
order. The stock control of a warehouse, or the membership records of a 
large organisation are examples of applications that spring to mind, but more 
humble tasks are equally suitable: keeping an address book that allows you to 
print envelopes for this year's Christmas cards, or cataloguing collections 
alphabetically, chronologically or even by value. 
For general applications you could purchase a database program that will 
fulfill your needs, but writing your own program gives you the opportunity to 
match it to precise requirements, and also allows you to expand the program 
as you become aware of special circumstances. BASIC is a perfectly suitable 
language in which to write the main body of your program. Inputting 
information, saving and loading from tape and displaying records on the 
screen can all be handled quickly enough, but BASIC is not nearly as fast as 
machine code when it comes to sorting data. This chapter presents a number 
of routines that will sort BASIC variable arrays into order with an astonishing 
saving of time. The techniques can easily be applied to data that is not held by 
BASIC, so writers of pure assembly language will also find them of use. 

Sorting methods 
Before presenting the first routine, I think a look at how we would sort an 
array using BASIC will be of benefit. The method is the same as we will use 
for our first machine code sort. The simplest way to sort data is to use a 
method, or algorithm, called a bubble sort. This rather picturesque name is 
meant to conjure up a vision of higher valued items rising to the top of an 
array as we process it. 

The human approach 
If you were to give a person a hand of playing cards, they might put them into 
order by searching through for the card of lowest value. When they had 
ascertained which of the cards this was, they would remove it from its current 
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position and place it at the end of the hand. They would then scan the 
remaining cards to discover which one is now the lowest and, when found, 
that card would be placed alongside the card first removed. Each time the 
search of the remaining cards is successfully completed, the number of sorted 
cards grows and the residue gets •smaller. Finally, the hand will be in the 
correct order. 
Of course, human intuition would play a large part in the sorting of a hand of 
cards. For example, by knowing that a card has the lowest value we could 
place it as soon as it is found or we might recognise that a group of cards is 
already in order. 

The computer approach 
To imitate most of the short cuts a human might take would involve some 
very complex programming. The bubble sort is a simple method that a 
computer can easily handle, while more advanced algorithms can exploit a 
computer's strengths and minimise the effect of its weakness. 
Look at the Integer Sort Demo program, Program 4.1. Lines 1160 to 1230 
make up a BASIC bubble sort routine. From this you can see the technique 
that we will also employ in the first machine code sorting routine. 

Program 4.1 
1000 Ral 
1010 REM ** 	Integer Sort Demo. 	** 
1020 REM Irick-kirA-k***********irk-A-kirklekirkirk 
1030 GOSUB 8000 
1040 WHILE 1:SIZE=0 
1050 WHILE SIZE<1 
1060 CLS:INPUT "Size of array";TMP70 
1070 SIZE=TMP%-1 
1080 WEND 
1090 DIM STORM(SIZE),SORTMSIZE) 
1100 FOR VALUE=0 TO'SIZE 
1110 STORM(VALUE)=32768-RND*65535 
1120 NEXT VALUE 
1130 GOSUB 2000 
1140 PRINT "BASIC bubblesort first - please wait." 
1150 START=TIME 
1160 FOR PASS=SIZE TO 1 STEP-1 
1170 FOR COMP= 0 TO PASS-1 
1180 	IF SORT7,(CCMP)>SORT7,(COMP+1) THEN 1220 
1190 	TMP7O=SORTMCOMP) 
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1200 	SORT7o(COMP)=SORTMCOMP+1) 
1210 	SORTMCOMP+1)=TM11. 
1220 a COMP 
1230 NEXT PASS 
1240 BASDUR=TIME-START 
1250 PRINT "BASIC bubblesort took ",BASDUR/300;" seconds 
1260 GOSUB 3000:GOSUB 2000 
1270 PRINT "SortInt next - please wait" 
1280 START=TIME 
1290 CALL HIMEM+1,@SORT%(0),SIZE+1 
1300 SIDUR=TIME-START 
1310 GOSUB 3000 
1320 PRINT "BASIC bubblesort took ",BASDUR/300;" seconds 
1330 PRINT "SortInt took ",SIDUR/300;" seconds" 
1340 PRINT "Another array? (Y/N) 
1350 TMP$=INKEY$:IF TMP$="" THEN 1350 
1360 IF TMP$<>"Y" AND TMP$<>"y" THEN END 
1370 ERASE STORELSORT% 
1380 WEND 
2000 REM *******-4  	**k* 
2010 REM ** 	Copy Array 	** 
2020 REM ***AAAkAA************A AAAAAAk  

2030 FOR VALUE=0 TO SIZE 
2040 SORTUVALUE)=STOREMVALUE) 
2050 NEXT VALUE 
2060 RETURN 
3000 REM 	*******k*********kkkkk 
3010 REM ** 	Print Array 	** 
3020 REM ***********AAAk****AAAk****** 
3030 PRINT "Do you want to see the results? (Y/N)" 
3040 TMP$=INKEY$:IF TMP$="" THEN 3040 
3050 IF TMP$<>"Y" AND TMPS<>"y" THEN RETURN 
3060 PRINT "Old array",,"New array" 
3070 FOR VALUE=0 TO SIZE 
3080 PRINT STOREMVALUE)„SORTMVALUE) 
3090 NEXT VALUE 
3100 RETURN 
8000 REM *******k********************** 
8010 REM ** Code Loading Routine ** 
8020 REM 1,**k****A******AAAA*********** 
8030 RESTORE:READ TOT:TLY=1 
8040 FOR CHK=HIMEM+1 TO HIMEM+TOT STEP 8 
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8050 SUM=0 
8060 FOR BLK=0 TO 7 
8070 READ B$:TMP=VAL("&"+B$) 
8080 SUM=SUM+TMP 
8090 IF TMPOPEEK (CHK+BLK) THEN TLY=O 
8100 NEXT BLK 
8110 READ TMP:IF TMP=SUM THEN 8130 
8120 PRINT "Data error in block ";(CHK-HIMEM)8+1:STOP 
8130 NEXT CHK 
8140 IF TLY THEN RETURN 
8150 RESTORE:READ TOT:MEMORY HIMEM-TOT 
8160 FOR ADR=HIMEM+1 TO HIMEM+TOT STEP 8 
8170 FOR BLK=0 TO 7 
8180 READ B$:POKE ADR+BLK,VAL("&"+BS) 
8190 NEXT BLK:READ TMP 
8200 NEXT ADR 
8210 RETURN 
9000 REM *-"c******)WddrAriddr**AAAAAAAA 

9010 REM ** 	SortInt Data 	** 

9020 REM AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

9030 DATA 104 
9040 DATA DD,4E,00,DD,46,01,50,59,760 
9050 DATA DD,6E,02,DD,66,03,23,7E,820 
9060 DATA C6,80,77,23,23,1B,7A,B3,843 
9070 DATA 20,F5,0B,C5,DD,6E,02,DD,1039 
9080 DATA 66,03,54,5D,13,13,1A,96,496 
9090 DATA 13,23,1A,9E,38,10,C5,46,577 
9100 DATA 1A,77,78,12,1B,2B,46,1A,449 
9110 DATA 77,78,12,13,23,C1,23,13,558 
9120 DATA OB,79,B0,20,E1,C1,0B,79,890 
9130 DATA B0,20,DO,DD,5E,00,0D,56,1038 
9140 DATA 01,DD,6E,02,DD,66,03,23,695 
9150 DATA 7E,D6,80,77,23,23,1B,7A,806 
9160 DATA B3,20,F5,C9,00,00,00,00,657 

The method comprises two loops. The outer loop begins by-subjecting the 
whole array to the inner loop, on the assumption that nothing is in order. 
The inner loop begins at the start of the array and compares the first and 
second items: if the first is lower than the second then they are swapped over. 
This inner compare loop then proceeds to perform the same operation on the 
second and third items and continues until it has compared (and swapped if 
necessary) all the adjacent items in the unsorted section. of the array, which 
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on the first pass is the whole array. At the end of this process we can 
guarantee that the last item in the section was the lowest value found: on the 
first pass of the inner loop, we have created a sorted section consisting of one 
item, the last one. 
The second time that the outer loop subjects the array to the compare loop it 
does not include the last item, the third time it can ignore the last two items, 
and so on. For each pass the sorted section becomes one item larger, the 
unsorted section one item smaller. Eventually, the number of items in the 
unsorted section is reduced to one, which, as all the other items were of a 
lower value, must be the highest. 
That is the principle behind a bubble sort, and when programmed in BASIC it 
seems quite neat and compact. Indeed, sorting a dozen or so items into order 
can be done quickly, but as we increase the number of items in the array 
things begin to slow down dramatically. For each extra item added to the 
array, not only is an extra inner, or compare loop required, but that loop i§ 
one comparison, and potential swap, longer. The mathematics of the 
situation are such that multiplying the size of an array by ten multiplies the 
time required to sort it by one hundred. 

Integer array sorting 
There is no better way of showing how bubble sorts slow down with increased 
array size than by a practical demonstration. Type in Program 4:1 and save it, 
as you will need to modify it to test further routines in this chapter. The 
program compares a sort prograiimed in BASIC with a machine code 
version, the listing of which is given in Source listing 4.1. Both methods sort 
an array of integer values into high to low order. Integer variables (defined 
with the % symbol) are whole numbers in the range —32768 to +32767, and 
therefore only two bytes of RAM are required to store each value. They are 
the simplest type of BASIC variable, and so a good place to start. 

Source code listing 4.1 
100 ; Sortlnt 
110 ; Sorts a BASIC integer array into high .to low order. 
120 ; Requires the address of the first element and the 
130 ; length of the array to be passed by BASIC. 
140 ; Position independent - corrupts registers AF,BC,DE,HL. 

DD4E00 150 SORTI 	LD 	C,(IX+0) ;Get length of array into BC and DE. 
DD4601 160 LD B,(IX+1) 
50 170 LD D,B 
59 180 LD E,C 
DD6E02 190 LD L,(IX+2) ;Point'HL to first item in array. 
DD6603 200 LD 11,(IX+3) 
23 210 INC HL ;Point to MSB of value. 
7E 220 UNSGD LD A,(HL) ;This loop converts the array from 
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C680 230 ADD 	A,080 ;signed to unsigned numbers. 
77 240 LD 	(HL),A 
23 250 INC 	11 
23 260 INC 	HL 
1B 270 DEC 	DE 
7A 280 LD 	A,D 
B3 290 OR 	E 
20F5 300 JR 	NZ,UNSCD 
OB 310 DEC 	BC ;Set BC to one less than array size. 
C5  320 PASS PUSH BC ;Save outer loop count. 
DD6E02 330 LD 	L,(IX+2) ;Point HL to first item. 
DD6603 340 LD 	H,(IX+3) 
54 350 LD 	D,H ;Point DE to second item. 
5D 360 LD 	E,L 
13 370 INC 	DE 
13 380 INC 	DE 
lA 390 NEXT LD 	A,(DE) ;Compare adjacent items 
96 400 SUB 	(HL) 
13 410 INC 	DE 
23 420 INC 	HL 
lA 430 LD 	A,(DE) 
9E 440 SBC 	A, (III.) 
3810 450 JR 	C,D3NE? ;If no swap, jump to DONE? 
C5 460 PUSH BC ;We will use B as a temporary store. 
46 470 LD 	B,(HL) ;Swap over MSBs. 
lA 480 LD 	A,(DE) 
77 490 LD 	(HL),A 
78 500 LD 	A,B 
12 510 LD 	(DE),A 
1B 520 DEC 	DE ;Swap over LSBs. 
2B 530 DEC 	HL 
46 540 LD 	B,(HL) 
lA 550 LD 	A,(DE) 
77 560 LD 	(HL),A 
78 570 LD 	A,B 
12 580 LD 	(DE),A 
13 590 INC 	DE ;Restore pointers. 
23 600 INC 	HL 
Cl 610 POP 	BC ;Recover.counter. 
23 620 DONE? INC 	HL ;Point to next items. 
13 630 INC 	DE 
OB 640 DEC 	BC ;Count minus one. 
79 650 LD 	A,C ;Check for zero. 
BO 660 OR 	B 
20E1 670 JR 	NZ,NEXT ;If not end of count, repeat NEXT. 
Cl 680 POP 	BC ;Retrieve outer loop count. 
OB 690 DEC 	BC ;Count minus one. 
79 700 LD 	A,C ;Check for zero. 
BO 710 OR 	B 
20D0 720 JR 	NZ,PASS ;If not end of count, jump to PASS. 
DD5EOO 730 LD 	E,(IX+O) ;This section returns the array to 
DD5601 740 LD 	D,(IX+1) ;its original form. 
DD6E02 750 LD 	L,(IX+2) 
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DD6603 760 LD 1L,(IX+3) 
23 770 INC ILL 
7E 780 SIGND LD A,(IlL) 
D680 790 SUB #80 
77 800 LD (HL) ,A 	. 
23 810 INC ILL 
23 820 INC HL 
1B 830 DEC DE 
7A 840 LD A,D 
B3 850 OR E 
20F5 860 JR NZ,SIGND 
C9 870 RET 

The BASIC program 
Before we run the program and then examine the machine code, have a look 
at the BASIC. Please take particular note of the last section, after line 8000 —
it is the code loading routine that we will use for all our BASIC programs. At 
a later stage you will probably wish to use an assembler to create machine 
code, but for now the BASIC loader will suffice. 
Program 4.1 begins by calling the code loading routine at line 8000, which 
installs the machine code above a lowered HIMEM location. The main 
program then asks for an array size and sets up two arrays. One, STORE%, is 
loaded with random numbers; the other, SORT%, is the array that is acted 
upon by both the BASIC and the machine code sorting routines. The contents 
of STORE% are copied into SORT% and a note made of the timer value. 
The BASIC bubble sort then takes place, and the time taken calculated and 
stored. The subroutine beginning at line 3000 is called, which gives you the 
chance to compare the contents of STORE% with the newly sorted SORT%. 
Next, the original state of SORT% is restored by copying STORE% into it 
(subroutine, line 2000), the timer value noted and the machine code sorting 
routine called. The duration of the sort is calculated; you are given the 
opportunity of studying the effect of Sortlnt and the relative times of the two 
methods are then displayed. Finally, you are asked if you wish to repeat the 
whole process. 

Using the integer sort demonstration 
When you have entered and safely saved the program, RUN it. There will be 
a pause while the machine code is checked, and if you have made an error 
when entering the DATA statements it will be at this point that you will 
normally be informed. I say normally because the method used to check the 
data is not completely foolproof. It is possible for two errors within the same 
block of data to cancel each other out, so if the machine code routine crashes 
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or does not work as described then this may be the cause. For this reason, as 
well as the possibility of a power cut, it is always wise to save programs as 
soon as they are entered. 
If the code is O.K. then it will be loaded above HIMEM. The next stage is for 
the program to ask you how large an array you wish to sort; to begin with, try 
50 items. The BASIC sort should take about 14 seconds: the machine code 
will do the same job in about 0.07 of a second — 200 times faster! Try a few 
arrays of larger sizes to see how the speed of the sort decreases dramatically. 
Up to a certain point the time saved by using machine code will be in the same 
proportion, but with very large arrays BASIC will, slow down even more, as it 
will often have to perform the 'garbage collection' required to remove 
out-of-date variables each time that it runs out of variable space. 
You use the routine with the BASIC CALL command. In the demo program 
the machine code starts at HIMEM+1, and you can see from line 1280 that 
two parameters are required: the first (@SORT% (0) in the program) passes 
the address of the first element of the array you wish to sort, the second 
(SIZE + 1) gives the number of elements, counting from one (so if your array 
has, say, 6 items, 6 is passed as the second parameter). 
The use of SortInt (the name I have given the routine) is not restricted to the 
above BASIC program. To include lines 8000 onwards in any other program 
and a GOSUB 8000 at the start of the program is the simplest way to install 
the routine, but it will be quicker if you save the code as a binary file and load 
it into memory from cassette or disk. You may load it anywhere sensible: the 
code is completely relocatable. If you are not sure exactly how to do this you 
will find an example in Chapter 6. 
And so to the machine code itself. The routine begins, at assembler line 150, 
by fetching the length value passed by BASIC. Parameters that have been 
sent by the CALL command can be found in a reserved area of memory, the 
first byte of which is pointed to by the IX register; they are in the reverse 
order to that of the list following the CALL, so that, as the length is the last 
parameter passed by BASIC, it follows that we will find the 16-bit length of 
the array at addresses IX and IX+ 1. This is loaded into BC, which is to serve 
as the outer loop counter, and also into DE. HL is filled with the second 
parameter, the address of the first item of the array, and then incremented so 
that it points to the most significant byte (MSB) of that item. 

Handling Signed numbers 
Integer array values are stored in the same manner as Z80 16-bit numbers, 
that is, low byte first, but there is the complication of negative numbers. 
These are held as 16-bit two's complement values: &FFFF is —1, &FFFE is 
—2 and so on. If we were to compare the numbers as they stand, some means 
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of recognising the numbers were negative would be needed; unless we did so, 
8000 (-32768 decimal) would appear to be higher than 7FFF (+32767 
decimal). A quick method is to add 8000 hex to all the values before we try to 
sort them, as this gives all the values the correct relationship. 8000 becomes 
0000 (using 16-bit arithmetic means we lose the overflow): 0001 becomes 
8001; and 7FFF takes on the value FFFF. When we have sorted the numbers 
we can restore them to their original value by subtracting 8000 hex. 
Lines 220 to 300 are the instructions that perform the conversion. DE is used 
as a counter: each value has &80 added to its MSB (there is no point in adding 
00 to the LSB), the pointer in HL is incremented to point to the MSB of the 
next value, and then DE is decremented and tested to see if it has become 
zero. If it has not, the unsigned loop (i.e. the loop for converting the values to 
unsigned numbers) continues. 
Note how we test DE, setting the Z flag if it is zero so that JR NZ can be used 
— it is a common mistake to forget that decrementing register pairs does not 
affect the flags. More often than not this works to the programmer's 
advantage, but in this case it means we must use LD A,D and then OR E to 
set the Z flag if DE has reached zero. 
With the array converted to an easily comparable form, we enter the outer 
loop after decrementing BC so that it equals the length of the array minus 
one. This outer loop counter is saved on the stack, although its value, left in 
BC, will also be used as the initial value of the inner loop counter. HL is 
pointed to the low byte of the first item, DE to the second. 
Now the inner loop begins. The byte at address (HL) is subtracted from that 
at (DE). The result is discarded, but the value of the carry flag (showing if a 
`borrow 256' was generated) will be carried over to the next subtraction. The 
pointers are incremented to point to the MSBs of the two values; this shows 
two of the oddities of Z80 code in their true light. In contrast to when we 
wished to know if DE had been decremented to zero (line 300), here we are 
thankful that the flags are not altered by the INC register pair instructions. 
Secondly, if we are working low to high' through a block of two-byte 
numbers, the advantage of the way the Z80 stores 16-bit numbers is shown —
if they were stored in the order MSB-LSB we would have to juggle with the 
pointer in HL so as to extract the low byte first. 
The next stage (lines 430-440) is to SBC (subtract with carry) the byte at (HL) 
from that at (DE), thereby taking into account the posibility of a 'borrow 256' 
being generated by the LSB subtraction. After this instruction, the carry flag 
will represent a true comparison between the two values. If it is set, then the 
first value is greater than the second, so no swap is required and line 450 
causes the next stage, the swapping of the values, to be skipped over. 
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Swapping the values 
In order to swap over the two values we need some extra storage, space. The 
quickest way to gain a register is to push the contents of BC (at this stage the 
inner loop counter) onto the stack and retrieve them later. Other methods 
that may be considered include using IY, but index register instructions are 
long-winded both in time and bytes. 
The operation between lines 470 and 610 may seem a little cumbersome at 
first glance but the instructions are only one byte in length, and most only 
take 4 clock cycles to perform. First, the byte from (HL) is stored in B (LD 
B,(HL)). We can now fetch the byte from (DE) and put it at (HL) with the 
instructions LD A,(DE) and LD (HL),A. The old value that was at (HL), 
now safely stored in B, can be loaded into the address (DE) with LD A,B and 
LD (DE),A. (Note how the lack of a LD (DE),B instruction means that we 
have to transfer the value to A.) Having swapped over the MSBs, the pointers 
are decremented, the LSBs swapped in the same manner, and the pointers 
restored. 
The routine reaches assembler line 620, label DONE?, having compared, and 
swapped if necessary, one pair of adjacent items. This is the end of the inner 
loop. HL and DE are pointed to the next pair of variables, and then we 
decrement the inner loop counter and test for zero. If zero is reached we have 
completed the inner loop, otherwise the routine jumps back to the NEXT 
label. 

The outer loop 
Remember that in line 320 we saved the outer loop counter on the stack. The 
inner loop has exhausted its counter. We POP BC from the stack, so B now 
contains the outer loop counter. The bubble sort demands that we repeat the 
inner loop one time less than there are items to be sorted, and it is this 
function that the outer loop controls. For example, if the array held 5 items, 
the inner loop would need to be repeated four times. On the first pass the 
inner loop needs to process all the items, so its counter needs to start at 4. 
When we retrieve the outer loop counter, it is decremented; if it has not 
reached zero, then another pass is required. If we now jump back to the 
instruction where the outer counter is saved on the stack, we can use the outer 
counter as the new starting value for the inner loop. The inner loop counter is 
therefore loaded with diminishing values for each pass, which it takes from 
the outer loop counter. 

Ending the routine 
When, eventually, zero is reached by the outer loop counter, all that remains 
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is to return the array to its original form by converting the array contents back 
to signed numbers. HL and DE are reloaded from the parameter area and 
lines 780-860 (the signed loop) reverse the process of the unsigned loop (lines 
220-300). Finally the RET instruction takes us back to BASIC. 
What do you do if you want to sort an array in the reverse order? No problem 
— to modify SortInt to work the other way round you only need to change 
one byte. Line 450 holds the key: JR C,DONE? (38 10). This is the condition 
test that bypasses the swap section of the routine. At this point in the routine 
the carry flag will be set if the first value is greater than the second, which will 
not cause a swap. By changing line 450 to JR NC,DONE? (30 10) then a swap 
will be carried out of the item is greater than the second, resulting in the 
whole sort working in the opposite direction. 
The bubble sort is capable of a simple enhancement that can speed up the 
sorting of arrays which are already nearly sorted. If the inner loop were to 
process a whole pass without having to swap any items, this would be an 
indication that the array was in order. A flag can be set at the start of the inner 
loop, and reset if a swap occurs. If the outer loop detects that the flag has 
remained set, it knows that the array is sorted. You may like to add this check 
to the above routine — it will test your ingenuity as there is no obvious place 
in which to store the flag. 

Sorting floating-point arrays 
The next routine is designed to sort an array of real numbers — the name 
used to define numbers that have both integer and fractional parts —
sometimes known as floating point numbers. In order to represent these, 
Locomotive BASIC uses five bytes. The format is capable of storing numbers 
in the range 2.9E-39 to 1.7E+38 to nine-digit accuracy. 
Obviously, comparing two blocks of five bytes will take longer than 
comparing integer variables, and swaps will take longer too. It is time to 
refine our sorting technique a little; a small modification to the algorithm will 
reduce the number of swaps we need to perform by a considerable amount. 
This new method is called a delayed replacement sort. There are more 
advanced methods available, such as the Shell-Metzner algorithm, but these 
only come into their own with quite large arrays, and may even be slower for 
small ones. Programming them in BASIC is worthwhile. The extra 
complexity of the machine code versions is unlikely to pay dividends until 
array size approaches the capacity of your computer. 
As a bubble sort progresses, there are a lot of swaps that are redundant. If 
one item is of a lower value than, say, the five items above it in the array, it 
will change places with each in turn. The delayed replacement sort avoids this 
by comparing the first item with subsequent values until it finds a value with 
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which a swap is not required. It then notes the address of this new value as the 
lowest it has found to date, and continues its search, updating the lowest 
value address each time it finds a lower value. Only when the end of the 
unsorted section of the array is reached are the values swapped over — the 
lowest value found is exchanged with the last unordered item, the size of the 
unordered area is reduced by one, and then this comparison loop is repeated 
until the whole array is sorted. 
This method is much closer to my earlier description of the way cards can be 
ordered. As a basis for a machine code routine it has the drawback of being 
more complex to program, but it is nevertheless feasible, and the speed 
gained compensates for the extra work required to handle real numbers: 
sorting a real array using the delayed replacement method in machine code 
takes about twice as long as a SortInt spends on an integer array. 

Real sort demonstration 
Program 4.2 is the data required to load the machine code. We will use the 
BASIC from the integer program, 4.1. You must change the array names so 
that real arrays are used (that is, delete the % suffix used for integer numbers, 
and if you wish, add a ! suffix). To give a proper test, change the random 
number generator so that it gives a greater range. 
Load Program 4.1 and make the required changes: delete lines 9000-9160 and 
replace them with Program 4.2.Save and then RUN the new program, 
SortReal Demo. If the data statements are O.K. then you will be able to test 
the new routine against a suitably modified bubble sort, or if you wish you can 
write a BASIC DR routine. It would be a good test of your understanding of 
the principle to do this — convert the machine code to BASIC! 

The format of real numbers 
Before we look at the machine code, I must describe how Locomotive BASIC 
uses the five bytes to represent floating point numbers. One byte represents 
the scale of the number and the others give the fractional part. To explain this 
let me give a simplified view first; the value 1117 can be•written as 1.117 * (10 
to the power of 3). One byte of the floating point representation would hold 
the (10 to the power of 3) scaling value (called the 'exponent'), while the 
other bytes would store the .117 (called the `mantissa'). 
The order in which the bytes are stored are the four mantissa bytes, least 
significant first, followed by the exponent. The most significant of the 
mantissa bytes (the fourth) has its seventh bit used for indicating the sign — if 
set then the number is negative. 
I said that the above description was simplified; if you look at the values 

44 



MACHINE CODE NUMBER SORTING 

Program 4.2 
9000 REM 
9001 REM ** 
9002 REM AAAA 	 

9010 DATA 128 
9020 DATA DD,4E,00,DD,46,01,0B,C5,799 
9030 DATA 01,04,00,DD,6E,02,DD,66,661 
9040 DATA 03,09,54,5D,09,EB,2B,C1,669 
9050 DATA C5,C5,D5,E5,1A,AE,17,30,1107 
9060 DATA 04,1A,17,18,2B,23,7E,A7,448 
9070 DATA 28,F7,13,1A,A7,20,06,2B,580 
9080 DATA 7E,17,3F,18,1B,1A,96,20,471 
9090 DATA 12,01,FC,FF,EB,09,EB,09,1014 
9100 DATA 06,04,1A,96,23,13,1A,9E,424 
9110 DATA 10,FA,17,2B,46,1F,A8,17,624 
9120 DATA E1,D1,30,02,62,6B,C1,08,893 
9130 DATA 78,B1,28,0A,C5,01,05,00,550 
9140 DATA EB,09,EB,C1,18,B3,13,23,929 
9150 DATA 06,05,1A,4E,77,79,12,2B,416 
9160 DATA 1B,10,F7,C1,0B,78,B1,20,823 
9170 DATA 8E,C9,00,00,00,00,00,00,343 

actually stored, you will find that they are somewhat more complex. First, the 
exponent byte gives a scaling value to the base two, and in order to be able to 
express both large and small values takes a mid-point in its range (81 hex) to 
define an exponent of 1. Numbers with this exponent will therefore fall in the 
range 1 to just under 2. An exponent of 82 puts the value in the range 2 to just 
under 4; 83 gives 4 to just under 8 and so on. Going down the scale, 80 
dictates a value between .5 and just under 1, 7F gives .25 to just under .5. 
The mantissa part of the number gives the fractional part within the range 
specified by the exponent. Thus a mantissa of 0000 hex and exponent of 81 
represents 1; mantissa 4000, exponent 81 equals 1.5; mantissa 6000 exponent 
81 equals 1.75. 
To demonstrate how real numbers are stored, I have included a short BASIC 
program which will allow you to explore the system. Program 4.3 prints out 
the five bytes of any floating point number that you care to enter. The values 
given are in hexadecimal. If you spend some time with the program you 
should be able to estimate floating point representations and then check your 
guess! 
There are two important points to remember about real numbers. The use of 
bit 7 of the fourth byte to represent the sign of the value means the mantissa is 
only a 15-bit value; and zero is treated as a special case. It always has an 
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exponent and mantissa of 0, but as no other value has an exponent of zero, 
this is all that needs to be tested to check for a zero value. 

Program 4.3 
100 REM ********************************************************** 

101 REM ** Real Numbers Demo ** 
102 REM ********************************************************** 

110 MODE 1:WNE 5 
120 WHILE 1 
130 INPUT "Number";A! 
140 PRINT "Number stored as the following:—" 
150 PRINT, 
160 FOR y=r TO 4 
170 PRINT HEX$(PEEK(y+@!)), 
180 NEXT y 
190 PRINT:PRINT " (____ Mantissa"; 
200 PRINT " ) Exponent":PRINT 
210 WEND 

SortReal — a floating-point sorting routine 
Our new machine code routine has much the same structure as Sortlnt, in that 
the outer and inner loops perform similar tasks. Despite the extra complexity 
involved, SortReal is longer by only 20 or so instructions than Sortlnt, 
although some speed potential has been sacrificed in order to keep the size 
down. When writing a routine, you should always bear in mind the relative 
importance of speed and size to your particular application. 
SortReal (Source listing 4.2) gets off to a simple start. BC is loaded with the 
length of the array from the IX memory area, which is decremented, thus 
becoming the outer loop counter. 

Source code listing 4.2 
100 ;SortReal 
110 ;Sorts a BASIC real array into high to low order. 
120 ;Requires the address of the first element and the 
130 ;length of the array to be passed by BASIC. 
140 ;Position independent - corrupts registers AF,BC,DE,IIL. 

DD4E00 150 LD C,(IX+0) ;Get length of array into BC. 
DD4601 160 LD B,(IX+1) 
OB 170 DEC BC 
C5 180 PASS PUSH BC ;Point HL to MS byte of first 
010400 190 LD BC,4 ;item, and DE to MS byte of 
DD6E02 200 LD L,(IX+2) ;second item. 
DD6603 210 LD H,(IX+3) 
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09 220 ADD 	HL,BC 
54 230 LD 	D,H 
5D 240 LD 	E,L 
09 250 ADD 	HL,BC 
EB 260 EX 	DE,HL 
2B 270 DEC 	HL 
Cl 280 POP 	BC 
C5 290 PUSH BC ;Save outer loop counter. 
C5 300 COMPR PUSH BC ;Save inner loop counter. 
D5 310 PUSH DE 
E5 320 PUSH HL 
lA 330 LD 	A,(DE) ;Test for equal signs. 
AE 340 XOR 	(HL) 
17 350 RLA 
3004 360 JR 	NC,ZERO? ;If equal jump to ZERO? 
IA 370 MOVON LD 	A,(DE) ;Put upper number's sign into 
17 380 RLA 	; carry and then jump to SWAP? 
182B.  390 JR 	SWAP? 
23 400 ZERO? INC 	HL ;Point to lower number's exponent. 
7E 410 LD 	A,(HL) ;Test it. 
A7 420 AND 	A 
28F7 430 JR 	Z,MOVON ;If it is zero, jump to MVON. 
13 440 INC 	DE ;Point to upper number's exponent. 
lA 450 LD 	A,(DE) ;Test it. 
A7 460 AND 	A 
2006 470 JR 	NZ,EXPO? ;If it is not ze-o, jump to EXPO: 
2B 480 DEC 	HL 
7E 490 LD 	A,(11L) ;Put lower number's sign into 
17 500 RLA 	; carry. 
3F 510 CCF 	; Invert it and then 
181B 520 JR 	SWAP? ;jump to SWAP? 
lA 530 EXPO? LD 	A,(DE) ;Compare exponents and if not equal 
96 540 SUB 	(HL) ;jump to MINU? 
2012 550 JR 	NZ,MINU? 
01FCFF 560 LD 	BC,OFFFC ;Subtract lower number's mantissa 
EB  570 EX 	DE,IIL ;from upper's. 
09 580 ADD 	HL,BC 
EB 590 EX 	DE,HL 
09 600 ADD 	HL,BC 
0604 610 LD 	B,4 
lA 620 LD 	A,(DE) 
96 630 SUB 	(HL) 
23 640 MANLP INC 	HL 
13 650 INC 	DE 
lA 660 LD 	A,(DE) 
9E 670 SBC 	A,(HL) 
10FA 680 DJNZ MANLP 
17 690 RLA 	; Put MS bit of result into carry. 
2B 700 MINU? DEC 	HL 
46 710 LD 	B,(HL) ;If values are negative, complement 
1F 720 RRA 	; the carry flag. 
A8 730 XOR 	B 
17 740 RLA • 
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El 750 SWAP? POP IlL ;Restore pointers 
D1 760 POP DE 
3002 770 JR NC, NXCM? ;Test if swap possible. 
62 780 LD 11,D ;If not, point HL to new 
6B 790 LD L,E ;"lowest" value. 
Cl 800 NXCM? POP BC 
08 810 DEC BC ;Test for last comparision. 
78 820 LD A,B 
Bl 830 OR C 
230A 840 JR Z,ENDCP ;If it is jump to ENDCP. 
C5 850 PUSH BC 
010500 860 LD BC,5 ;Point DE to MS byte of next 
EB 870 EX DE,HL ;item's mantissa 	 
09 880 ADD HL,BC 
EB 890 EC DE,HL 
Cl 900 POP BC ;and then jump back for the 
1833 910 JR COMPR ;next comparison. 
13 920 ENDCP INC DE ;Swap lowest value item found with 
23 930 INC HL ;last item, even if it is itself! 
0605 940 LD B,5 
lA 950 XFER LD A,(DE) 
42 960 LD C,(HL) 
77 970 LD (HL),A 
79 980 LD A,C 
12 990 LD (DE),A 
28 1000 DEC HL 
1B 1010 DEC DE 
10F7 1020 DJNZ XFER 
Cl 1030 POP BC ;Test if another pass is required. 
OB 1040 DEC BC 
78 1050 LD A,B 
B1 1060 OR C 
208E 1070 JR NZ,PASS 
C9 1080 RET 

The outer loop begins with lines 180-280, which fetch the address of the first 
item and use this information to point HL to the fourth byte of the first 
variable and DE to the fourth byte of the second variable. If you refer back to 
the description of the real number format, you will see that the fourth byte is 
the MSB of the digits, and also holds the sign of the number in bit 7. 
Note that lines 180 and 280 PUSH and POP the outer loop counter so that we 
can use BC to add 4 to the addresses fetched. 
Also examine the use of EX DE,HL; this one-byte, four-cycle instruction is 
very handy. It can also be used to alleviate the restriction of only being able to 
perform arithmetic on the HL pair. Because we can quickly swap the values in 
DE and HL, perform the arithmetic, and then swap back, DE can be used for 
instructions that normally work exclusively on HL, with only a two-byte, 
eight-cycle penalty. 
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The inner loop 
Before we begin the comparison section of our routine, we must retrieve the 
outer loop counter from the stack and immediately re-save it — this loads BC 
with a value (diminishing on each pass of the outer loop) for use as the inner 
loop counter (lines 280-290). Before any work begins, we must take the 
precaution of saving the inner loop counter and our pointers. The inner loop 
can be considered as two sections — comparison (330-730) and SWAP? 
(750-790). As soon as a decision has been made about swapping the values, a 
jump is made to the SWAP? section. Because this jump can be made at a 
number of different places we cannot predict where HL and DE will be 
pointing, which is why we save the pointers. 

Comparing values 
The first step in the comparison section (lines 300-740) is to compare the signs 
of the values to be compared. This information is held in bit seven of the 
fourth byte, which is why we begin by pointing there. Lines 330-360 make a 
good example of the use of an XOR instruction. In Chapter 3 I explained that 
the result of an XOR is 1 if two bits are different, otherwise the bit will be 
reset. By XORing the fourth byte of each variable together, bit 7 of the result 
will be set if the seventh bits of the bytes compared are different from each 
other, and therefore the two values are of different signs. If they are not, a 
jump is made to ZERO?. If they are, then a decision can be made. The sign 
of the second number is placed into the carry and a jump made to SWAP?. 
The next test, ZERO? is included because of the special case of representing 
0 mentioned above. The first value's mantissa is tested: notice the AND 
instructions which are all that are required to set the flags. If the test does turn 
out to be zero, then some byte saving is achieved with a jump back to the 
label MOVON — the same codes are used to slightly different effect. DE is 
still pointing to the fourth, signed byte of the second value, and the routine 
will decide if a swap is required on the basis of the sign (a negative number is 
less than zero). MOVON puts the sign in the carry and jumps to SWAP? 
The routine reaches line 440 if the two values have the same sign and the first 
is not zero. The next test is to see if the second value is zero. Lines 480-500 do 
this, pointing DE to the exponent and testing for zero. If true, the 
complement of the first item's sign is put into carry and we jump to SWAP? 
Lines 530-550 test for equal exponents; if they are unequal then a decision can 
be made about the swap. After the SUB instruction, the zero flag will be clear 
if the exponents are unequal, in which case a jump is made to the label 
MINU?. Note that carry will be set if the exponent at (HL) is larger than that 
at (DE), and this information is carried forward as the basis of the SWAP? 
decision. 
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Let us recap on what the comparison section has dealt with so far. Values of 
different signs have caused a jump to SWAP?, as has the discovery that either 
value, is zero. The exponents have been compared, and if they were unequal, 
a jump to MINU? (which is a precursor to the SWAP? section) has been 
effected. In all the above cases, the carry flag has been set to indicate which 
value is the higher. 
The last stages, lines 560-690, is only reached if the values are of equal sign 
and exponent, and are not zero. The pointers in HL and DE are set to point 
to the LSB of the values. The way we go about this may seem a little odd; it is 
an example of how saving one byte can cause muddle! There is no SUB 
instruction for register pairs, and if we use SBC we must clear the carry unless 
we are sure of its state. An alternative is to use ADD, but add a negative, 
16-bit number. Two's complement is not just a convention; it actually works. 
Adding &FFFC has the same effect as subtracting 4, so we can use ADD and 
ignore the carry. Making machine code compact does not make it easier to 
follow! 
Subtracting 4 from DE and HL leaves them pointing to the first bytes of each 
value. The routine now prepares for a loop with lines 610-630. If we were only 
concerned with speed, it would be slightly quicker not to use a loop for this 
stage; repeating lines 640-670 an extra three times would make the routine 
eight bytes longer but save 54 clock cycles for each comparison that reached 
the final test. I have opted for the slower version, but you might want to try 
the faster method. 
Just before the loop, B is loaded with 4 so as to act as a counter, and the first 
subtraction performed with SUB. The loop then increments the pointers and 
uses SBC, so that at the end of the loop the two 4-byte values have been 
compared, with bit 7 of the accumulator reflecting which was the larger. 
Remember that the original seventh bits of the fourth bytes indicated the 
sign, and this stage of the comparison would not have been reached if they 
had been unequal. As each bit 7 was the same, bit 7 of the result will faithfully 
reflect any borrow from bit 6 of the subtraction. A borrow would indicate that 
the value at. (HL) is bigger than that at (DE); so bit 7 is rotated into the carry 
to be used to decide whether a swap is required. 

The SWAP? section 
This can be entered at one of two points: MINU? or SWAP?. The first (lines 
700-740), is reached by jumps from the comparison section that have not 
tested the sign of the values. The carry tells us which value is the greater, and 
we know the signs are the same, but the routine must take account of the fact 
that negative values need to be placed in the reverse order to positive ones: 
—2 is higher than —3, while +2 is lower than +3. 
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The sign of the values is transferred from bit 7 of (HL) to bit 7 of B. The carry 
is then rotated into bit 7 of A. XOR B has the effect of inverting the original 
value of the carry if the values are negative. The result is then rotated back 
into the carry. 
SWAP? (lines 750-790), having restored the original pointers, is a very simple 
test, as we have arranged things in such a way that the need to swap items is 
dictated by the carry. If you wish to change the order of the sort then change 
line 770 to JR C,NXCM? (38 02). 
The delayed replacement principle now comes into effect, because if a swap is 
not required, the HL pointer is loaded with a new address, that of the lower 
value — no swap actually occurs until the end of the inner loop. Lines 800-840 
are the by now familiar end-of-loop instructions, to which a new twist is 
added. Because we only want to increment the pointer to the second item if 
we are going to repeat the loop, line 840 jumps out of the loop when BC 
reaches zero but before we alter DE. If the loop is to continue, we add 5 to 
DE, pointing it to the next item, and then perform an unconditional jump to 
COMPR. 
The tail end of the inner loop begins at ENDCP. The lowest item found 
during the last pass is swapped with the last unsorted item by a loop which has 
5 iterations, one for each byte, using C as a temporary buffer. Even if HL is 
pointing to the same variable as DE, which is to say that the lowest item 
found was also the last, the swap occurs — the number of times that this is 
likely to happen is probably quite small, so it is arguable as to whether a 
check, although easy to program, is worth the extra bytes. 

The outer loop 
The end of the routine recovers the outer loop counter, decrements and tests 
it, and jumps back to PASS if the inner loop still needs to be applied to the 
array. 
The most important principle demonstrated by this routine is that the careful 
use of the flags register can make for economical programming. All the tests 
are arranged so that the carry flag reflects the order in which the values should 
be placed. Rotate is very handy for testing the most significant bit of a byte 
(or indeed the last significant), while XOR can be very powerful in certain 
circumstances. 
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CHAPTER 5 

Sorting String Arrays 

We have sorted integer and real arrays — in this chapter it is the turn of string 
arrays. The first machine code routine, SortString, will handle single-
dimension arrays of character strings. Later we will look at how to sort string 
arrays which are multi-dimensional. 
Program 4.3 gives the new set of data statements for SortString, to be inserted 
into Program 4.1. Again, you must make a number of changes to the names of 
the variables, and there is a small challenge to your BASIC programming 
skills in the creation of random strings, particularly if you make them of 
random length. Failing this, and it is perhaps a better test of the routine, you 
can read strings from data statements. 

Program 5.1 
9000 REM AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk 

9001 REM ** 	SortString Data 	** 
9002 REM 
9010 DATA 88 
9020 DATA DD,4E,00,DD,46,01,0B,C5,799 
9030 DATA DD,6E,02,DD,66,03,54,5D,836 
9040 DATA 13,13,13,C5,D5,E5,1A,4F,801 
9050 DATA OC,46,04,EB,23,7E,23,66,619 
9060 DATA 6F,EB,23,7E,23,66,6F,A7,922 
9070 DATA 05,28,0A,3F,OD,28,06,1A,203 
9080 DATA 96,13,23,28,F3,E1,D1,38,977 
9090 DATA 02,62,6B,C1,0B,78,B1,28,748 
9100 DATA 05,13,13,13,18,CD,06,03,300 
9110 DATA 1A,4F,7E,12,71,13,23,10,432 
9120 DATA F7,C1,0B,78,B1,20,BO,C9,1157 

String arrays in BASIC 
Before looking at Source Listing 5.1, we need to know how BASIC strings are 
stored in an array. Each dimensioned string array has its own string descriptor 
block, holding three bytes for each element. The first byte gives the length of 
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Source code listing 5.1 
100 ;SortString 
110 ;Sorts a BASIC single dimensioned string array into 
120 ;alphabetic order. 
130 ;Requires the address of the first element and the 
140 ;length of the array to be passed by BASIC. 
150 ;Position independent - corrupts registers AF,JC,DE,HL. 

DD4E00 	160 	LD C,(IX+0) ;Get length of array into BC. 
DD4601 170 	LD B,(IX+1) 
OB 	180 	DEC BC 
C5 	190 PASS PUSH BC 	;Save outer loop counter. 
DD6E02 	200 	LD L,(IX+2) ;Point HL to first string 
DD6603' 210 	LD H,(IX+3) ;descriptor 
54 	220 	LD D,H 	;Point DE to second string 
5D 	230 	LD E,L 	;descriptor. 
13 	240 	INC DE 
13 	250 	INC DE 
13 	260 	INC DE 
C5 	270 COMPR PUSH BC 	;Save inner loop counter. 
D5 	280 	PUSH DE 
E5 	290 	PUSH HL 
lA 	300 	LD A,(DE) 	;Load C with length of upper string. 
4F 	310 	LD C,A 
OC 	320 	INC C 
46 	330 	LD B,(HL) 	;Load B with length of lower string. 
04 	340 	INC B 
EB 	350 	EX DE,HL 
23 	360 	INC 11 ;Point DE to upper string. 
7E 	370 	LD A,(HL) 
23 	380 	INC IlL 
66 	.390 	LD H,(HL) 
6F 	400 	LD L,A 
EB 	410 	EX DE,HL 
23 	420 	INC HL 	;Point III, to lower string. , 
7E 	430 	LD A,(HL) 
23 	440 	INC Id, 
66 	450 	LD H,(HL) 
6F 	460 	LD L,A 
A7 	470 	AND A 	;Clear carry flag. 
05 	480 CLOOP DEC B 	;Decrement lengths, and if either 
280A 	490 	JR Z,SWAP? 	;reach zero, set the carry flag 
3F 	500 	CCF ; 	accordingly and jump to SWAP? 
OD 	510 	DEC C 
2806 	520 	JR Z,SWAP? 
lA 	530 	LD A,(DE) 	;Compare characters from strings, 
96 	540 	SUB (111,) ;increment string pointers, and if 
13 	550 	INC DE 	;the characters were equal, jump 
23 	560 	INC HL 	;back to CLOOP. 
28F3 	570 	JR Z,CLOOP 
El 	580 SWAP? POP HL 	;Restore pointers 
D1 	590 	POP DE 
3802 	600 	JR C,NXGM? 	;Test if swap possible. 
62 	610 	LD H,D 	;If not, point IIL to new 
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6B 620 LD 	L,E ;"lowest" string. 
Cl 630 NXCM? POP 	BC 
OB 640 DEC 	BC ;Test for last comparision. 

78 650 LD 	A,B 
B1 660 OR 	C 
2805 670 JR 	Z,ENDCP ;If it is jump to ENDCP. 
13 680 INC 	DE ;Point to next string and jump back 
13 690 INC 	DE ;for the next comparision. 
13 700 INC 	DE 
18CD 710 JR 	COMPR 
0603 720 ENDCP LD 	B,3 
lA 730 XFDSC LD 	A,(DE) 
4F 740 LD 	C,A 
7E 750 LD 	A,(1IL) 
12 760 LD 	(DE),A 
71 770 LD 	(HL),C 
13 780 INC 	DE 
23 790 INC 	HL 
10F7 800 DJNZ XFDSC 
Cl 810 POP 	BC ;Test if another pass is required. 
OB 820 DEC 	BC 
78 830 LD 	A,B 
81 840 OR 	C 
20E0 850 JR 	NZ,PASS 
C9 860 RET 

the string, which explains why BASIC strings can only be 255 characters in 
length. Bytes two and three hold, in Z80 notation, the address of the start of 
the string. The actual location of the string will depend on how it was entered 
— you will find that strings read from data statements will have a descriptor 
pointing to the BASIC program where the string is held. The practical upshot 
of all this is that to find a string we look up the address in its descriptor block, 
and if we want to swap two strings over we only need to swap the three bytes 
of their respective descriptors. 
In a single-dimension array, consisting of say 10 items, the descriptor block 
will be 30 bytes long. We can find the block with the @ prefix — this will pass 
the address to our machine code routine. The fact that the strings themselves 
may be dotted all over RAM is no problem; we can find each one as we need 
it from its address in the block, and we don't need to change any of the strings 
themselves. We have all the ingredients to write a sorting routine. 

SortString in action 
SortString uses the delayed replacement method and is very similar in 
principle to SortReal. The two essential differences are the comparison 
section and the simpler code required to swap items — we swap only the 
descriptors. 
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The routine begins the outer loop by fetching the length of the string and 
setting up BC as the outer loop counter. HL is pointed to the first and DE to 
the second of the descriptors in the array block, and then the inner loop 
begins. After pushing the register pairs, the lengths of the two strings are 
placed in B and C, and we reload HL and DE to point not to the descriptors 
but to the strings themselves. 
CLOOP (representing Comparison LOOP, lines 480-570) has three exit 
points. This is necessary because we need to take the string lengths into 
acount — ABC must be placed before ABCD. As we examine the individual 
characters of both strings we will probably find a pair that are not the same; 
this is one basis of a comparison and forms one of the exits from the loop (line 
570). If this does not happen before we reach the end of one of the strings, 
then the lengths dictate the final order. B and C are used to hold the number 
of characters left to test, so they are decremented on each pass of CLOOP. 
The first instructions (lines 480-520) test to see if either has reached zero and 
exits will occur at lines 490 or 520 if this is the case. 
We use the carry to convey information to the next section of the routine. The 
flag is cleared by line 470; remember that DEC r instructions do not affect the 
carry, so an exit at line 490 will take a clear carry flag with it. CCF 
(complement carry flag) is used to set the flag and the counter in register C is 
decremented. If this causes an exit at line 570 then a set carry flag is passed 
on. 
If the first two tests show that there are characters to be compared (for 
example, if the first pass of CLOOP revealed that both strings consisted of at 
least one character), then lines 530-540 are reached. Using subtraction, these 
compare the ASCII codes of the characters we are currently pointing to —
zero will result if they are equal. Before testing for a match, the pointers are 
incremented so as to point to the next potential characters in the two strings. 
Now the conditional jump instruction can decide whether the ASCII codes 
were the same — if they were then we will need to look at further characters 
(if there are any), so a jump back for another pass is made. Note that if this 
happens, the carry will be clear for the first stage of CLOOP. If Z is not set, 
then the characters are different: we pass on to the next stage with carry 
indicating which character had the higher ASCII code. 

SWAP? 
Before a decision is made as to whether a swap is required, the addresses of 
the descriptors are retrieved from the stack. Whichever exit was taken from 
CLOOP, the carry flag will be set if the second string should be placed before 
the first, which means we need to swap the descriptors. If carry is not set, HL 
is loaded with the address of the new 'lowest found so far' string. 
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Lines 630-670 are a very straightforward ending to the inner loop, pointing 
DE to the next descriptor before jumping back if further comparisons are to 
be made. The outer loop ends by swapping the lowest string descriptor with 
the last of the unsorted block; it uses a simple three-pass loop to save bytes. 
The outer loop counter is then salvaged from the stack and the decision made 
as to whether a further pass is required. 
Using SortString to order an array in Z to A order is possible because of the 
manner in which CLOOP works — just alter line 600 to JR NC,NXCMP? (30 
02). 
The three sorting routines described so far in this book are simple and fast 
methods of sorting arrays of each type of variable available in Locomotive 
BASIC. Not only can they be included in BASIC programs; they can also be 
called from other machine code programs, and even modified to sort other 
areas of data. The CLOOP section of SortString can be lifted out and used as 
a 'string compare' subroutine for any two ASCII strings provided you match 
the entry requirements: (B and C with the lengths, DE and HL pointing to 
the first character of each string). 

SortArray —  the heart of a database program 
The next routine, SortArray, is written for a more specific application, while 
still demonstrating sorting principles. Its purpose is to give database programs 
a powerful facility by sorting a two-dimensional string array according to the 
contents cif one of its dimensions. 
SortArray can also be instructed to work in either direction. Additionally, 
simple number handling allows it to sort positive integer values stored as 
strings in one dimension of the array used for the database (BASE$). 
Database (Program 5.2) is the type of program that can be of great use for 
home or business purposes. At its simplest level it simulates a file card system, 
with the added bonus of print-outs, and it has the ability efficiently to sort and 

Program 5.2 
1000 REM ****  
1001 REM ** 	Database Program 	** 
1002 REM AAAAAAAAAAAAAAAAAAAA**  

1003 REM ** After a break or error ** 
1004 REM ** GOTO 1500 to save data ** 
1005 REM AAAAAkAAAAAk  ** 
1010 ZONE 18:MODE 2 
1020 WINDOW 110,1,80,3,23 
1030 WINDOW #1,1,80,1,1 
1040 WINDOW #2,1,80,25,25 
1050 PRINT #1,TAB(29);"*** Database Program 
1060 GOSUB 8000 
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1070 MAXI%=250 
1080 INPUT 112,"Load a database (Y/N)";T$ 
1090 IF T$="Y" OR T$="y" THEN GOSUB 2040:GOTO 1500 
1100 REM AAAk****AAAAAkAAAAAA********* 
1101 REM ** Set Up New Database ** 
1102 REM ************AAAAAAAA**AAAAAk* 
1110 PRINT #1,TAB(27)"*** Set Up New Database ***" 
1120 INPUT 112,"How many fields do you require";F% 
1130 F7,=F70-1:IF F70>255 OR Fu 1 THEN 1120 
1140 DIM BASE$(MAXILF70),NM$(F7.) 
1150 FOR X=0 TO F% 
1160 PRINT"Field ";X+1;" Title -", 
1170 PRINT 12,"Title?",:IINE INPUT £2,NM$(X) 
1180 PRINT NM$(X) 
1190 NEXT X 
1200 IM%=-1:GOSUB 5000 
1500 REM ****AAAk****AAAAAAAAAAAAAAAA*  

1501 REM ** 	Menu 	** 

1502 REM AAAAA*******************-AAAk* 
1510 WHILE 1 
1520 RESTORE 10010 
1530 PRINT #1,TAB(28);"******** Menu ** 	 ***" 

1540 CLS 
1550 FOR X=1 TO 6 
1560 READ P$ 
1570 PRINT CHR$(10);CHR$(10),P$„" 	";X 
1580 NEXT X 
1590 PRINT #2,TAB(23);"Press the required function number" 
1600 M$=INKEY$:IF M$<"1" OR M$>"6" THEN 1600 
1610 CLS 
1620 ON VAL(M$) GOSUB 2000,3000,4000,5000,6000;7000 
1630 WEND 
2000 REM 	* 
2001 REM ** 	Load Data 
2002 REM 	*AAAAAAAA****** *** 

2010 INPUT #2,"Delete old database (Y/N)";Q$ 
2020 IF Q$<>"Y" AND Q$<>"y" THEN RETURN 
2030 ERASE NM$,BASE$ 
2040 PRINT #1,TAB(28) ;"AAAAk Loading Data *****" 
2050 INPUT 112,"Name of database";D$ 
2060 IF D$="" OR LEN(D$)>8 THEN 2050 
2070 CLS #2:LOCATE 1,23 
2080 OPENIN D$ 
2090 INPUT 119,IMLF7, 
2090 INPUT E9,IM7„F% 
2100 DIM NWF70),BASE$(MAXILF7.) 
2110 FOR X=0 TO F% 
2120 INPUT 119,NM$(X) 
2130 NEXT X 

** 
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2140 FOR X=0 TO II'S 
2150 FOR Y=0 TO F70 
2160 	INPUT #9,BASE$(X,Y) 
2170 NEXT Y 
2180 NEXT X 
2190 CLOSEIN 
2200 RETURN 
3000 REM  ******, 	******************* 

3001 REM ** 	' Save Data 	** 
3002 REM ****AAA*************AkAk***** 

3010 PRINT #1,TAB(28);"**AAA Saving Data *****,, 

3020 INPUT 112,"Name of data to be saved";D$ 
3030 IF D$="" OR LEN(D$)>8 THEN 3020 
3040 CLS 112:LOCATE 1,23 
3050 OPENOUT D$:WRITE #9,IM,F% 
3060 FOR X=0 TO F% 
3070 WRITE 119,NMS(X) 
3080 NEXT X 
3090 FOR X=0 TO IM% 
3100 FOR Y=0 TO F% 
3110 WRITE #9,BASWX,Y) 
3120 NEXT Y 
3130 NEXT X 
3140 CLOSEOUT 
3150 RETURN 
4000 REM **AAAAAAAAAk**AAAk**AAAAAAAAk  

4001 REM ** 	Examine Files 	** 

4002 REM AAAkAAA 	Alc****-A- Hdrk* 

4010 PRINT #1,TAB(28);"AAAA* Examine Data *****" 
4020 INPUT 112,"Which file number";EMEX%=EX7.-1 
4030 PRINT #2,CHR$(243);" Next 1 ";CHR$(242);" Back I "; 
4040 PRINT #2,CHR$(241);" 8 Ahead 144 8 Back 1 "; 
4050 PRINT #2,"COPY - Edit 1 ENTER - Menu 1 S - Search"; 
4060 IF EXIXO THEN EX7.=0 
4070 IF EX70>=IM% THEN EX%=IM% 
4080 a=0:GOSUB 7500 
4090 T$=INKEY$:IF T$="" THEN 4090 
4100 T70=ASC(T$) 
4110 IF T%=13 THEN RETURN 
4120 IF T7=224 THEN 4190 
4130 IF T7,<240 OR T>243 THEN 4090 
4140 IF n=240 THEN EX70=EX7.-8 
4150 IF T70=241 THEN EX%=EX70+8 
4160 IF T7.=242 THEN EX70=EX70-1 
4170 IF T%=243 THEN EX7.=EX7.+1 
4180 COTO 4060 
4190 PRINT. #1,TAB(28);"**AAA Editing File *****.i 
4200 INPUT 112,"Which field do you wish to alter";MT70=T%-1 
4210 IF T7.<0 OR T7.>F7. THEN 4200 
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4220 PRINT #2,"Entry?",:LINE INPUT #2,BASE$(EX%,T%) 
4230 C%=0:GOSUB 7500 
4240 INPUT #2,"Another field? (Y/N)";T$ 
4250 IF T$="Y" OR T$="y" THEN 4200 
4260 PRINT #1,TAB(28);'**A 44  Examine Data *****" 
4270 GOTO 4030 
5000 REM *********1.******AAAk*****A4k* 
5001 REM ** Add Files ** 
5002 REM ********k***5,AAkAAAAAAA4***** 
5010 PRINT #1,TAB(28);"***** Adding Files *k***" 
5020 MORE=1 
5030 WHILE MORE 
5040 IM%=IM%+1 
5050 CLS:PRINT"File No. ";IM%+1 
5060 FOR X=0 TO F% 
5070 PRINT X+1;" ";NM$(X);" -", 
5080 PRINT #2,"Entry?", 
5090 LINE INPUT #2,BASE$(IM%,X) 
5100 PRINT BASE$(IM%,X) 
5110 NEXT X 
5120 IF IM%>MAXI% THEN MORE=0 
5130 INPUT #2,"Another file (Y/N)";T$ 
5140 IF T$="N" OR T$="n" THEN MORE=0 
5150 WEND 
5160 RETURN 
6000 REM **A 	AAA A k******)C 	A A A *A 	A 	*** 
6001 REM ** Sort Data ** 
6002 REM *************** 	k 	k* 
6010 PRINT #1,TAB(28) ;IIAAAAAk Sort Data "AAA*" 
6020 INPUT 4/2,"By which field do you wish to sort?",S% 
6030 S%=S7-1:IF SUO OR S%>F% THEN 6020 
6040 INPUT #2,"Do you wish to sort A to Z? (Y/N)";T$ 
6050 IF T$="N" OR T$="n" THEN DR%=1 ELSE DR7=0 
6060 PRINT #1,TAB(28);"******** Sorting *A"h**" 
6070 CALL HIME4+1,@BASE$(0,S%),M,FL@BASE$(0,1),@BASE$(0,0),DR% 
6080 RETURN 
7000 REM **.kiK*******AAAAAAAA******A* 
7001 REM ** Print Out ** 
7002 REM ************,,AAk*kkkkirkk***** 
7010 PRINT #1,TAB(28);"**Aii* Print Out ******" 
7020 INPUT #2,"From file no.";ST 
7030 ST=ST-1:IF ST<1 THEN ST=0 
7040 INPUT #2,"To file no.";ED 
7050 ED=ED-1:IF ED>IM% THEN ED=IM% 
7060 C%=8 
7070 FOR W=ST TO ED 
7080 EX%W 
7090 GOSUB 7500 
7100 NEXT W 
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7110 RETURN 
7500 REM ************ 	**** 	k 	k* 

7501 REM ** 	Print File 	** 
7502 REM ********************' 	k* 
7510 CLS 
7520 PRINT #C70,"File No.";EX70+1 
7530 FOR X=0 TO F70 
7540 PRINT 4/C7.,X+1;" ";NM$(X);" -",BASES(EX70,X) 
7550 NEXT X 
7560 RETURN 
9000 REM ********************* 
9001 REM ** 	SortArray Data 	** 
9002 REM IAAAAAAkAAAAAAAAAk**AAAkIsAisk** 
9010 DATA 232 
9020 DATA DD,5E,02,DD,56,03,DD,6E,958 
9030 DATA 04,DD,66,05,A7,ED,52,DD,1039 
9040 DATA 75,04,DD,74,05,DD,4E,08,770 
9050 DATA DD,46,09,78,B1,C8,C5,DD,1215 
9060 DATA 6E,OA,DD,66,0B,54,5D,13,650 
9070 DATA 13,13,C5,D5,E5,1A,A7,28,910 
9080 DATA 5C,4F,OC,7E,A7,3F,28,55,664 
9090 DATA 47,04,EB,23,7E,23,66,6F,719 
9100 DATA EB,23,7E,23,66,6F,7E,D6,984 
9110 DATA 30,D6,0A,30,2F,1A,D6,30,655 
9120 DATA D6,0A,30,28,E5,D5,C5,0E,965 
9130 DATA 00,7E,D6,30,D6,0A,30,04,664 
9140 DATA OC,23,10,F5,61,C1,C5,41,860 
9150 DATA 0E,00,1A,D6,30,D6,0A,30,574 
9160 DATA 04,0C,13,10,F5,79,94,C1,758 
9170 DATA D1,E1,20,11,05,28,0E,3F,605 
9180 DATA OD,28,0A,1A,96,13,23,28,333 
9190 DATA F3,18,02,18,91,E1,D1,17,895 
9200 DATA DD,AE,00,1F,38,02,62,6B,689 
9210 DATA C1,0B,78,B1,28,05,13,13,584 
9220 DATA 13,18,87,DD,4E,OA,DD,46,778 
9230 DATA OB,A7,ED,42,EB,A7,ED,42,1186 
9240 DATA DD,4E,02,DD,46,03,09,EB,839 
9250 DATA 09,DD,46,06,04,C5,D5,E5,949 
9260 DATA 06,03,1A,4F,7E,12,71,13,390 
9270 DATA 23,10,F7,E1,D1,DD,4E,04,1035 
9280 DATA DD,46,05,EB,09,EB,09,C1,977 
9290 DATA 10,E3,C1,0B,78,B1,20,AB,947 
9300 DATA C9,00,00,00,00,00,00,00,201 
10000 RE4 AAAAAAk************AAAkAAAk** 

10001 REM ** 	Menu Data 	** 
10002 REM *4AAAAkAAAAAAAk*******kk***** 

10010 DATA Load data,Save data,Examine fi 
10020 DATA Add data,Sort data,Print data 
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sift through the information it contains. You can use it as an address book 
which can list all your contacts that live in any particular town or city. You can 
use it to catalogue a stamp collection by country of origin, and, in a few 
moments, re-list the stamps in order of age. 
Before we launch into the program let me define the terms that I shall use to 
describe the database. The information is stored in a two dimensional string 
array. One dimension of the array has as many elements as there are to be 
`fields'; these are the various subheadings such as name, address, age and so 
on. Therefore, one field will perhaps contain all the surnames of the people in 
your database array. 
The other dimension has as many elements as there are 'files'; each file 
contains all the fields pertaining to an individual record. One file of the array 
will contain all the fields — name, address etc. — relevant to a particular 
person (or perhaps cassette, stamp or whatever you are keeping a record of). 
Each element is a string of up to 255 characters, each having both a file and 
field number. Elements with the same field number contain the same type of 
data, and elements with the same file number relate to the same record. 
The bulk of the program is written in BASIC for two reasons: you will be able 
to expand and modify it to meet your personal requirements with ease, and 
Locomotive BASIC is fast enough for most of the program to be useful 
without resorting to machine code. As I hope you will customise the program 
to suit you, the following is a commentary on the BASIC. 

Database 
Lines 1000-1070: Set up the screen display, load the machine code and set 
MAXI% to 250. This sets the maximum number of files that the program will 
hold — you may specify a much larger value if you are likely to use short 
strings or only a few fields. 

Lines 1080-1090: Give the opportunity for loading a new set of information 
from the keyboard, or loading an old database from tape (or disk). 

Lines 1120-1140: Ask how many fields are needed and dimension the main 
and title array accordingly. Note that the first field is numbered 0, so line 1130 
subtracts 1 from F%. 

Lines 1150-1190: A loop that inputs the title you want for each field — it will 
tidy up screen display if you keep the titles reasonably short. 

Line 1220: IM% is the number of the last file in BASE$ that holds data. The 
numbering begins at 0, so —1 is an invalid file. At this point execution is 
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passed to a subroutine which is also available from the menu (Add data). 

Lines 1500-1630: A closed loop to print the menu from data steatements, 
fetch a valid choice, and GOSUB the required function. 

Lines 2000-2170: Fetches a database from a suitable tape or disk file. IM% 
and F% are read in, new arrays are dimensioned and filled with information 
from tape or disk. 

Lines 3000-3150: Dumps the current database to tape or disk in a form 
suitable for the LOAD subroutine to read. 

Lines 4000-4080: The start of the Examine routine asks which file you wish to 
begin with (EX%), prints the prompting messages and then uses the Print 
subroutine to display the first file. 

Lines 4090-4100: Fetches a valid response to the prompts. 

Lines 4110: If the response is ENTER, return to menu. 

Line 4120: If the response is COPY then jump to the edit section. 

Lines 4130-4180: Other valid responses change EX% as required and then 
jump back to 4060, where EX% is made legal, and the new file displayed. 

Lines 4190-4270: Gives the chance to change any field of the current file. 

Lines 5000-5160: New files are added by eliciting each field from the 
keyboard. IM% is incremented and compared with MAXI% to ensure we do 
not overrun the size of the array. 

Lines 6000-6080: The subroutine to call SortArray. Note the parameters of 
the CALL command. It is possible to rewrite this section to allow you to sort 
only, say, the first 10 files. 

Lines 7000-7110: A rudimentary printer driver. It uses the print subroutine. 
You can expand this subroutine (if you have a printer!) to be more selective. 

Lines 7500-7560: This subroutine is called from three places in the program: 
the examine, print and edit options. It sends the contents of the file number 
EX% to the channel defined by C%. 
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Lines 8000-8190: The code loading routine. This. and the following section, 
can be replaced with a loading operation from tape or disk. 

Lines 9000-9280: SortArray in data statements. 

Lines 10000 on: The function names for the menu. 

Database makes good use of the Amstrad's windowing functions. Two 
single-line windows at the top and bottom of the screen are used for titles and 
prompts. Notice that the program always inputs to stream 2, the bottom 
window; and an oddity of Locomotive BASIC (at least on my CPC 464) 
means that string prompts included in LINE INPUT commands appear on 
stream 0, whichever channel you specify. As a result, separate PRINT #2 
commands have to be used: if your machine behaves in a more predictable 
manner then you can save some lines of BASIC. 
Using the program is quite simple. The main caution I will give is do plan the 
number and the titles of fields with care. For example, split names into fore 
and surnames, and addresses by road, town, etc; this will give many more 
options when you want to sort data. Numbers may require special treatment, 
as I will explain when we look at the machine code. Don't be afraid to declare 
a few extra fields for comments and future expansion — you can give these 
new names by breaking into BASIC and redefining the appropriate element 
of TITLE (NM$). 
You may notice that the prompt line of the examine subroutine gives a search 
option that does not, as yet, work. The next chapter will give a further 
machine-code routine to implement this option, with the appropriate BASIC 
additions. 

Parameters for SortArray 
SortArray uses many more parameters than our previous routines. In the 
order that they appear above the IX pointer (and therefore the reverse order 
to that in which they must be declared), they are as follows: 

IX+0 and IX+ 1: the direction of the sort. Bit 0 of (IX+0) is all that is used by 
the machine code. Passing an even number will initiate an A to Z sort; 
conversely an odd value forces a Z to A result. 

IX+2 and 1X+3: the address of element (0,0) of the array. 

IX+4 and IX+5: the address of element (0,1) of the array. 
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IX+6 and IX+ 7: the number of fields. An eight-bit number is all that can be 
handled, so 256 is the maximum number of fields possible. There is no reason 
why SortArray could not handle more fields, but as this seems an unlikely 
requirement, the restriction alloWs SortArray to use eight-bit loop counters. 
Note that fields are numbered in the range 0-255 for the purposes of the 
machine code and array numbering, although BASIC translates the range to 
1-256 for display purposes. 

IX+8 and IX+9: the number of files (less one). Note that this need not be the 
same as the total number of elements dimensioned. 

IX+10 and IX+11: the address of the first element in the field on which you 
wish to sort. 

It is worth mentioning that the field and file variables in Database (F% and 
IM%) begin at zero, and the machine code takes this into account. 

SortArray in action 
Source code listing 5.2 shows SortArray. The same structure as our previous 
DR sorts is used — outer loop and inner loop. CLOOP, from SortString, is 
also evident. In fact, the main body of the routine is very similar to 
SortString, with the added complication of handling strings as numbers. 

Source code listing 5.2 
100 ;SortArray 
110 ;Sorts a BASIC multi-dimensioned string array into 
120 ;alphabetic order, or if both strings begin with a 
130 ;numerical character, arithmetic order. 
140 ;Does not handle negative numbers. 
150 ;Direction of sort determined by an entry parameter. 
160 ;Addresses of field which determines sort, first and 
170 ;second field, number of fields and items and direction 
180 ;of sort to be passed by BASIC. 
190 ;Position independent - corrupts registers AF,BC,DE,111, 

DD5E02 	200 	LD E,(IX+2) ;Calculate the distance between 
DD5603 	210 	LD D,(IX+3) ;fields and store the result in 
DD6E04 	220 	LD L,(IX+4) ;memory at IX relative addresses. 
DD6605 230 	LD II,(IX+5) 
A7 	240 	AND A 
ED52 	250 	SBC 
DD7504 260 	LD (IX+4),L 
DD7405 270 	LD (IX+5),11 
DD4E08 	280 	LD C,(IX+8) ;Get number of items into BC. 
DD4609 290 	LD B,(IX+9) 
78 	300 	LD A,B 
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Bl 
C8 

310 
320 

OR C 
RET Z 

C5 330 PASS PUSH BC ;Save outer loop counter. 
DD6EOA 340 LD L,(IX+10) ;Point EL to first string 
DD660B 350 LD H,(IX+11) ;descriptor 
54 360 LD D,H ;Point DE to second string 
5D 370 LD E,L ;descriptor. 
13 380 INC DE 
13 390 INC DE 
13 400 INC DE 
C5 410 COgPR PUSH BC ;Save inner loop counter. 
D5 420 PUSH DE 
E5 430 PUSH HL 
lA 440 LD A,(DE) ;Test upper string length. 
AT 450 AND A 
285C 460 JR Z,SWAP? ;If empti jump with carry clear. 
4F 470 LD C,A ;Load C with upper string length. 
OC 480 INC C 
7E 490 LD A,(HL) ;Test length of lower string. 
A7 500 AND A 
3F 510 CCF 
2855 520 JR Z,SWAP? ;If empty jump with carry set. 
47 530 LD B,A ;Load B with lower string length. 
04 540 INC 	B 
EB 550 EX DE,IIL 
23 560 INC 	HL ;Point DE to upper string. 
7E 570 LD A,(HL) 
23 580 INC HL 
66 590 LD H,(HL) 
6F 600 LD L,A 
EB 610 a 	DE,HL 
23 620 INC HL ;Point IIL to lower string. 
7E 630 LD A, (11L) 
23 640 INC 	HL 
66 650 LD H,(HL) 
6F 660 LD L,A 
7E 670 LD A,(1IL) ;If lower string does not start 
D630 680 SUB £30 ;with a number, jump to CLOOP. 
D60A 690 SUB £.0A 
302F 700 JR NC,CLOOP 
lA 710 LD A,(DE) ;If upper string does not begin 
D630 720 SUB £30 ;with a number, jump to CLOOP. 
D60A 730 SUB £0A 
3028 740 JR NC,CLOOP 
E5 750 PUSH HL ;Save values. 
D5 760 PUSH DE 
C5 770 PUSH BC 
0E00 780 LD C,0 
7E 790 SGLP1 LD A,(HL) ;This loop counts the number of 
D630 800 SUB £30 ;numerical characters before a 
D60A 810 SUB £0A ;decimal point (or other character) 
3004 820 JR NC,SG1DN ;in the lower string, placing the 
OC 830 INC C ;result in H. 
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23 
10F5 
61 
Cl 
C5 
41 
0E00 
lA 
D630 
D60A 
3004 
OC 
13 

840 
850 
860 SG1DN 
S70 
880 
890 
900 
910 SGLP2 
920 
930 
940 
950 
960 

INC 	HL 
DJNZ SGLP1 
LD 	H,C 
POP 	BC 
PUSH BC 
LD 	B,C 
LD 	0,0 
LD 	A,(DE) 
SUB 	E30 
SUB 	EOA 
JR 	NC,SG2DN 
INC 	C 
INC 	DE 

;Retrieve length of second string. 

;Performs same function for upper 
;string, leaving the result in C. 

10F5 970 DJNZ SGLP2 
79 980 SG2DN LD 	A,C ;Test for same sized numbers, 
94 990 SUB 	H ;setting carry in the process. 
Cl 1000 POP 	BC ;Restore old values. 
D1 1010 POP 	DE 
El 1020 POP 	III, 
2011 1030 JR 	NZ,SNAP? ;If numbers are not same size, jump. 
05 1040 CLOOP DEC 	B ;Decrement lengths, and if either 
280E 1050 JR 	Z,SWAP? ;reach zero, set the carry flag 
3F 1060 CCF 	; accordingly and jump to SNAP? 
OD 1080 DEC 	C 
280A 1090 JR 	Z,SWAP? 
lA 1100 LD 	A,(DE) ;Compare characters from strings, 
96 1110 SUB 	(HL) ;increment string pointers, and if 
13 1120 INC 	DE ;the characters were equal, jump 
23 1130 INC 	DL ;back to CLOOP. 
28F3 1140 JR 	Z,CLOOP 
1802 1144 JR 	SWAP? ;A "bodge" to allow the routine 
1891 1146 PATCH JR 	PASS ;to be position independent. 
El 1170 SWAP? POP 	HL ;Restore pointers 
D1 1180 POP 	DE 
17 1190 RLA 
DDAE00 1200 XOR 	(IX+0) 
1F 1210 RRA 
3802 1220 JR 	C,NXCM? ;Test if swap possible. 
62 1230 LD 	H,D ;If not, point HL to new 
6B 1240 LD 	L,E ;"lowest" string. 
Cl 1250 NXCM? POP 	BC 
OB 1260 DEC 	BC ;Test for last comparison. 
78 1270 LD 	A,B 
B1 1280 OR 	C 
2805 1290 JR 	Z,ENDCP ;If it is jump to ENDCP. 
13 1300 INC 	DE ;Point DE to next string descriptor. 
13 1310 INC 	DE 
13 1320 INC 	DE 
1887 1330 JR 	COMPR ;Jump back for next comparison. 
DD4EOA 1340 ENDCP LD 	C,(IX+10) ;This section points DE and HL 
DD460B 1350 LD 	B,(IX+11) ;to the two stri- Ig descriptors 
A7 1360 AND 	A ;to be swapped in the first field. 
ED42 1370 SBC 	HL., BC 
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involving every byte of RAM! This happened on one occasion while I was still 
developing the BASIC, so I have left the error check (testing BC for zero) in 
the routine to help you avoid the same mistake. 

Comparison section 
You should recognise lilies 330-670 as being similar to SortString, with a 
check for empty strings. Next comes the number handling (lines 680-1030). 
The lower string's first character is tested to see if it is an ASCII digit, that is, 
has a value in the range &30 to &39. We test for this with two successive 
subtractions: subtracting &30 will, if the character is a digit, bring it into the 
range 0 to 9; a further subtraction of &OA (10) will therefore only cause a 
carry if the character is in this range. 
The second string is tested in the same manner, and if either string does not 
begin with a digit, then both strings are compared as if they are character 
strings rather than values by jumping ahead to CLOOP. 

Comparing strings as 'numbers' 
The next section deals with strings which the routine has decided are 
numbers; both strings of the comparison begin with digits. Before two loops 
are used to count the number of digits in each string, the values in BC, DE 
and HL are saved on the stack. 
SGLP1 (lines 790-850) counts the number of significant digits in the string, 
that is, the number of ASCII digits before a non-digit character. Comparing 2 
with 1000 using CLOOP would give 2 a higher significance than 1000 as its 
first character is higher; to avoid this problem we check through each 
character of the first string, using C as a counter. On each pass through the 
loop, if a valid digit is found, C is incremented; the pointer to the string, HL, 
is also incremented: and then B (holding the total length of the string) is 
decremented and tested. We will only exit from SGLP1 when we have found 
a non-numeric character or the end of the string has been reached — in both 
cases C will hold a value for the number of significant digits in the first string. 
When we move on to SGLP2 we will want to retain the value in C, but as HL 
is now temporarily available, we can move the value into H. BC is now free, 
allowing us to load C with the length of the second string by POPing and then 
rePUSHing BC. SGLP2 performs the same task as the first significance loop, 
except on the second string. By the time we leave the second loop we have 
two values, in C and H, which we can compare. 
Notice that SGLP2 uses the DJNZ instruction even though it means 
transferring the contents of C to B. If we used DEC C and JR NZ instead, the 
number of program bytes would remain the same, and even in the case of one 
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pass of the loop we would only save one machine cycle, because single-byte 
LD and DEC operations take 4 cycles, and conditional JRs use 13 or 8 cycles 
depending upon whether the condition is met or not, while DJNZ takes 16 or 
11 cycles respectively. Two passes of the loop and we break even, and each 
pass after that would cost a cycle if we stuck with C. This may seem a rather 
pedantic point to make, but these are the sort of principles that we will need 
to bear in mind when writing code to achieve speed — in this case we need not 
even sacrifice RAM locations. 
Back to the listing, and SG2DN (SiGnificance loop 2 DoNe): at this stage the 
two significant figure values, i.e. the number of digits before a decimal point 
(or other non-numeric character) are compared. If they are equal and the Z 
flag is therefore set by the subtraction, we must continue to compare the 
strings. If they are numbers with the same quantity of significant digits then 
CLOOP will be able to handle them. On the other hand, if they are not equal, 
we have sufficient information (in the carry flag, of course) to move on to 
SWAP? 
Ordinary strings reach CLOOP from lines 700 or 740. This is exactly the same 
as the comparison loop in SortString, with one minor oddity: all routes to 
CLOOP arrive with carry clear, so no AND A instruction is needed. What 
are lines 1144-1146 doing in the middle of the routine? SortArray is rather 
long, over the 128-byte limit that JR can dictate. If we used a JP at the end of 
the second loop to jump to the beginning, the routine would not be 
position-independent as we would need to supply an actual address for JP to 
load into the PC. In order to keep the routine position-independent, the end 
of the outer loop performs a JR to PATCH, which causes another relative 
jump to the start of the loop. This is ugly and unstructured but it works. The 
uneven line numbering helps to show that this is not part of the program flow. 

The swap section 
SWAP? (lines 1170-1240), having restored the pointers, makes the decision as 
to whether to move the lowest-string pointer, HL, on the basis of the result in 
the carry flag, but remember that we want to make SortArray bi-directional. 
This can be achieved by inverting the carry if a sort is desired in Z to A order, 
which means we actually use HL as a highest-string pointer. Line 1190 saves 
the carry in bit 0 of the A register, and then in line 1200 we XOR it with bit 0 
of (IX+0), the direction parameter. If this was set, the resultant bit 0 of A is 
an inversion of the carry, otherwise it holds the original value. The new value 
is rotated back into carry for use as the basis of the SWAP? decision. This is 
quite a powerful use of XOR. 
Lines 1250-1330 end the inner loop, as seen in SortString. 
Now to the part where the whole array is sorted on one field. The address of 
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the first element-in the sorting field is fetched from the parameter area and 
placed in BC. Lines 1360-1400 subtract this from the two pointers so that HL 
and DE contain the offset from the beginning of the field of the two 
descriptors in which we are interested. Note that the first and second string 
pointers have temporarily changed register pairs due to the EX instruction. 
We now add these offsets to the base address of the whole array, swapping 
the registers with another EX. Fetching the number of fields and 
incrementing it leaves BC as a counter for the next loop, XFELM (transFer 
ELeMents). 
XFDSC is a loop inside this, and swaps the three bytes of each descriptor. 
When the first field is done, the pre-calculated offset to the next field is added 
to the original pointers, safely recovered from the stack, and the next field 
swapped about. The process continues until line 1690 detects that no more 
fields are to be swapped. 
The outer loop ends with its counter being retrieved and decremented. If 
another pass is required, it is jumped to via PATCH, as described earlier. 
SortArray is a fairly complex routine to follow, particularly for newcomers to 
machine code. Once you have become knowledgeable in its workings you 
may want to improve its number handling capabilities to include negative and 
even floating point numbers. If you enjoy attention to detail you might try to 
shrink its size so that PATCH is not required — if you succeed, let me know! 
As a part of Database, SortArray transforms a BASIC program into 
something quite impressive. As the basis of a machine code filing program it 
will serve well, but remember that if you are going to write in pure machine 
code you can arrange your data variables area to suit yourself. The manner in 
which the BASIC variables are laid out is very useful for implementing 
variable length strings, but garbage collection then becomes a problem. 
Having fixed length strings may seem a waste of space but can lead to some 
very fast searching as well as sorting routines. 
The end of this chapter brings us to the end of our sorting routines, but not 
the end of Database. In the next chapter we will add the Search facility. 
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Enhancing Database 

A search routine 
The routines presented in this chapter are all designed to improve the BASIC 
program introduced in the last chapter, Database. The functions they 
perform, however, may be put to good use in other programs, and the 
principles involved may be harnessed to your own ends. 
The first routine, Search, has a self explanatory title. If you give it a target 
string, it will find a matching one from any field of the BASE$ array and 
return its number to BASIC. The time savings achieved by using machine 
code instead of BASIC for this particular purpose are not so dramatic as we 
have seen with the previous sorting routines, but the method is neat, and it 
allows the inclusion of so-called wild cards in the target string. These enables 
us to search for strings without giving a full description. 
Search can be used to find a particular entry in the database. If you want to 
remind yourself of the people who are in your address file whose first name is 
Paul, then Search will find them for you. 
A wild card feature enhances Search. This allows you to define characters as 
wild, in which case the routine will match them to any character. Take the 
example of finding out whose birthdays occur this month; if you have included 
a date of birth field in your address book database, you may have included it 
in the form DD-MM-YY, where DD is the date, MM the month and YY the 
year. Note that you should use two digits for each value, so a birth date of 2nd 
February 1960 would be entered as 02-02-60. On the other hand, perhaps you 
might wish to sort the information by age, in which case the form 
YY-MM-DD would at least allow you to put people in order of the year in 
which they were born. 
Where the wild card feature comes into its own is in finding all the people who 
were born in, say, June. By giving the target string as ' \\-06', where the first 
two characters are wild, then we can find each entry in the date of birth filed 
that has `-06' as its third, fourth and fifth characters. 
Search is interfaced with Database in such a way that the hunt for matching 
strings begins at the entry after the one currently on display. Therefore, if the 
`forename' field is searched for the name 'Paul', the search will begin with the 
next file. If the last file is reached before a match is found, then Search goes 
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back to the beginning of the aray and continues looking until it has cycled 
back to the first string that it tested. 
If no matching string is found in any of the 'forename' fields of BASE$, the 
BASIC of Database will find a negative value in the result variable RES% and 
simply re-display the original file. If, however, a match is found, then the 
number of the file is returned in RES% and Database displays that file, 
making a beep to inform you of its success. To find any further entries that 
match the target string, you simply call the search function again. 

Implementing Search 
The incorporation of Search into the BASIC of Database is achieved by 
adding the lines of Program 6.1 to Program 5.2. At two points new lines 
replace parts of the original, while the rest slot into gaps. The bulk of 
Program 6.1 consists of new data statements, containing the machine code for 
Search; the first data statement alters the size read by the code loading 
routine, so SortArray is loaded immediately above HIMEM, followed, 232 
bytes later, by Search. 

Program 6.1 
1070 MAXI70=250:RES7.-1:SCHS="-" 

4125 IF T(,=83 OR T7.=115 THEN 4500 

4500 PRINT #2,"Current search string? ";SCH$;" (Y/N) "; 
4510 INPUT 112,T$ 
4520 IF TS<>"N" AND T$0"n" THEN 4550 
4530 PRINT 112,"Enter new string (\ = wild card) "; 
4540 LINE INPUT 112,SCH$ 
4550 INPUT 112,"Which field do you wish to search";WH% 
4560 WH7=WH7.-1:IFINTHU0 OR WIri:,>F7. THEN 4550 
4570 CALL HIMEM+233,En+1,@BASE$(0,W11%),@BASE$(IM,WH7),@SCHMRES% 
4580"IF RES%>-1 THEN PRINT CHR$(7):EX70=RESZ 
4590 COTO 4030 

9010 DATA 368 

9310 DATA 3E,03,DD,86,04,DD,77,04,768 
9320 DATA 30,03,DD,34,05,DD,4E,08,636 
9330 DATA DD,46,09,60,69,09,09,DD,740 
9340 DATA 5E,06,DD,56,07,19,DD,75,777 
9350 DATA 08,DD,74,09,EB,DD,6E,04,924 
9360 DATA DD,66,05,A7,ED,52,20,09,855 
9370 DATA 01,00,00,DD,5E,06,DD,56,629 
9380 DATA 07,C5,DD,6E,02,DD,66,03,863 
9390 DATA 1A,4F,46,04,0C,13,23,7E,371 
9400 DATA 23,66,6F,EB,7E,23,E5,66,975 
9410 DATA 6F,OD,20,03,05,18,0D,05,206 
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9420 DATA 28,0A,1A,FE,5C,28,01,BE,653 
9430 DATA 13,23,28,ED,D1,13,C1,28,792 
9440 DATA 0E,03,DD,6E,08,DD,66,09,688 
9450 DATA A7,ED,52,20,BO,CB,F8,DD,1366 
9460 DATA 6E,00,DD,66,01,71,23,70,694 
9470 DATA C9,00,00,00,00,00,00,00,201 

By adding the new lines to Database, saving and then running the modified 
program, you will find that the 'S' option of the Examine function becomes 
active. When it is chosen, you will be asked if you want to enter a new target 
string, while the previous target string is displayed in brackets. The first time 
you select Search the old target string will be empty; when you enter your 
chosen string you will be asked which field you wish to search. Having been 
given a suitable value, the program then calls Search, and moments later 
(microseconds, if you have a small database) the computer will beep and 
show you the first file in which it found the target string. No beep, no match 
— you are returned to the original. Finding the next occurrence does not 
involve you in re-entering the target string. 
To include wild card characters in the target string, use the slash symbol 
(running 'downhill' left to right) to indicate letters you are not interested in. 
Although similar in structure to our sorting routines, Search uses a different 
method for detecting the end of its scan through the strings. The code consists 
of two nested loops (one loop inside another): the outer loop cycles through 
each file and uses the inner loop to compare the chosen field with the target 
string. The outer loop ends either when it returns to the first address that it 
tested or finds a match. 

Source code listing 6.1 
100 ;Search. 
110 ;Finds the first string in an array that matches a given 
120 ;string, which may include "wild cards". 
130 ;Searching may begin at any part of an array. 
140 ;Item at which to begin search, addresses of first, last 
150 ;and target strings, plus integer variable for result to 
160 ;be passed by BASIC. On return the result will hold the 
170 ;the offset of the first element that matches, or a value 
180 ;one greater than the number of elements if no match. 
190 ;Position independent - corrupts AF,BC,DE,HL. 

7000 3E03 200 SEARCH LD 	A,3 	;Add 3 to the "last element" 
7002 DD8604 210 	ADD 	A,(IX+4) 	;address. 
7005 DD7704 220 	LD 	(IX+4),A 
7008 3003 230 	JR 	NC,SKIP 
700A DD3405 240 	INC 	(IX+5) 
700D DD4E08 250 SKIP 	LD 	C,(IX+8) 	;Put number of initial item into BC. 
7010 DD4609 260 	LD 	B,(IX+9) 
7013 60 	. 270 	LD 	H,B 	;Put it in HL and multiply by 3. 
7014 69 280 	LD 	L,C 
7015 09 290 	ADD 	HL,BC 
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7016 09 300 ADD HL,BC 
7017 DD5E06 310 LD E,(IX+6) ;Add the address of the first item. 
701A DD5607 320 LD D,(IX+7) 
701D 19 330 ADD HL,DE 
701E DD7508 340 LD (IX+8),L ;Store "already checked" address in 
7021 DD7409 350 LD (IX+9),11 ;IX memory area. 
7024 EB 360 EX DE,HL ;DE points to item to test. 
7025 DD6E04 370 CHKAD LD L,(IX+4) ;Fetch address of end of array. 
7028 DD6605 380 LD H,(IX+5) 
702B A7 390 AND A ;Clear carry. 
702C ED52 400 SBC HL,DE ;Compare with current address. 
702E 2009 410 JR NZ,INLP 
7030 010000 420 LD BC,0 ;If we have reached the end, restore 
7033 DD5E06 430 LD E,(IX+6) ;BC and pointer to start of array. . 
7036 DD5607 440 LD D,(IX+7) 
7039 C5 450 INLP PUSH BC ;Save counter. 
703A DD6E02 460 LD L,(IX+2) ;Point ILL to target string 
703D DD6603 470 LD H,(IX+3) ;descriptor. 
7040 IA 480 LD A,(DE) ;Put length of test string into C. 
7041 4F 490 LD C,A 
7042 46 500 LD 8,(HL) ;Put length of target string into B. 
7043 04 510 INC B ;Increment lengths for test purposes. 
7044 OC 520 INC C 
7045 13 530 INC DE ;Point to addresses of strings. 
7046 23 540 INC HL 
7047 7E 550 LD A,(11) ;Get addresses. 
7048 23 560 INC ILL 
7049 66 570 LD H,(HL) 
704A 6F 580 LD L,A 
704B EB 590 EX DE,HL ;DE now points to target string. 

704C 7E 600 LD A,(HL) 
704D 23 610 INC HL 
704E E5 620 PUSH HL ;Save "next descriptor -1" 
704F 66 630 LD H,(HL) 
7050 6F 640 LD L,A ;HL now points to test string. 

OD 650 TEST DEC C ;If we have not tested whole of test 
2003 660 JR NZ,STR? ;string, jump to STR?. 
05 670 DEC B ;Set Z if target has been completed. 
180D 680 JR NXLP? 
05 690 STR? DEC B ;If we have test whole of target 
280A 700 JR Z,NXLP? ;string jump to NXLP?. 
IA 710 LD A,(DE) ;Test target string for "wild card". 
FE5C 720 CP  #5G 
2801 730 JR Z,NXELM 
BE 740 CP (HL) ;Compare respective characters. 
13 750 NXELM INC DE ;Move pointers. 
23 760 INC HL 
28ED 770 JR Z,TEST ;If match or "wild", jump back. 
DI 780 NXLP? POP DE ;Restore "next descriptor -1" to DE 
13 790 INC DE ;Point DE to next descriptor. 
Cl 800 POP BC ;Retrieve counter. 
280E 810 JR Z,RESLT ;If we have found a match, jump. 
03 820 INC BC ;Increment counter. 
DD6E08 830 LD L,(IX+8) ;Load IIL with "already tested" 
DD6609 840 LD H,(IX+9) ;address. 
A7 850 AND A 
ED52 860 SBC HL,DE ;Compare it with current address. 
20B0 870 JR NZ,CHKAD ;If more to test, jump back. 
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CBF8 88B SET 7,B ;Make counter negative. 
DD6E00 890 RESLT LD L,(IX+0) ;Get address of result variable. 
DD6601 900 LD H,(IX+1) 
71 910 LD (HL),C ;Load it with counter. 
23 920 INC HL 	_ 
70 930 LD (HL),B 
C9 940 RET 

Search is documented in Source Listing 6.1. It expects a number of values to 
be passed by BASIC. In order that they should arrive in the IX memory area 
they are: 
@RES%: The address of an integer variable in which Search will place the 
result. 
@SCH$: The address of the string descriptor of the target string. 
@BASE$(1M%,WH%): The address of the last item in the selected field of 
the data array. 
@BASE$(1M%,0): The address of the first item in the selected field of the 
array. 
EX%+1: The number of the file after the one currently on display: if this is 
one higher than the total number of items in the field, Search will 
automatically adjust. 
The routine, as loaded by Database, is located at HIMEM+233. It is fully 
relocatable, so it can be placed in any safe area of RAM. 
Search's first task, when called, is to alter the value in (IX+4) and (IX+5). 
When BASIC calls Search, this parameter contains the address of the 
descriptor of the last element of the field. By adding 3 to the 16-bit parameter, 
it will point to an address after the last descriptor of the selected field. This is 
a useful address to have stored; it can be compared with the address of the 
descriptor we are about to test to show if we have reached the end of the field. 
If this is the case, we need to recommence the search at the beginning of the 
field. 
Study how index register operations are used in lines 200-210; often these 
carry a time penalty, but note that line 240 will be skipped over unless adding 
3 to the low byte results in a carry. 
BC is used by the outer loop to keep track of the number of the string 
currently being tested. The value in BC will be returned in the RES% 
variable as the 'answer' to Search — it is not used as a loop counter. It would 
be possible to leave the initial value in the RAM parameter area instead of 
using a register pair, but the time and size factors of index operations must be 
considered. Using (INC(IX+d), as we did in line 240, takes three bytes and 
no less than 23 machine cycles, to say nothing of the further 5 bytes and 12 or 
even 30 cycles to handle a potential carry into the MSB. POP, INC and PUSH 
BC total 3 bytes and 26 cycles. Using BC does mean that we have to load the 
result back into RAM at the end of the program, but this is something that 
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only needs to be done once, rather than on each pass of the outer loop. The 
arguments in favour of using the index instructions are founded in keeping the 
program easy to follow, rather than fast and compact. 
Another reason for using BC to hold the file number value rather than one of 
the other values needed by the routine, is that the initial file number must be 
fetched from RAM for the purposes of calculating addresses. Having gone to 
the trouble of fetching the value, we may as well keep it in BC or on the stack. 
Lines 270-360 serve two purposes, the most obvious of which is to load DE 
with the address of the first item we are about to test. In addition, this address 
is stored in RAM to be used to test for the end of the outer loop. The address 
could be passed by BASIC, but it is easy for us to calculate it ourselves. The 
process involves multiplying the number of the first item we wish to test by 
three, as there are three bytes to each descriptor, and adding the address of 
the first item in the field. You could argue that we don't multiply the number, 
but add it to itself twice; the answer is the same. 
DE is used as a pointer by the outer loop to keep track of the next string 
descriptor. It holds an address, rather than a value, and this is checked to see 
if the outer loop has finished: in other words if all the fields have been 
searched. I have chosen DE because we will need HL for any address 
calculations, but we can swap these two pairs with ease (EX DE,HL). BC is 
normally used as a counter because of the special instructions that make use 
of it — LDIR and the like, as well as DJNZ. Even when not using these, it 
helps to work to a pattern — I use B and C individually or as a pair to count 
with whenever practical. 

The outer loop 
We enter the loop at CHKAD (CHecK ADdress), line 370. HL is loaded with 
the address in (IX+4) and (IX+5) that we modified earlier to point past the 
last entry in the descriptor block in which we are interested. The AND A, 
SBC HL,DE will result in a carry if we have reached the end — in this event, 
we reload DE with the address of the first item in the field and reset BC to 
zero. 
The inner loop is prepared for from line 450: BC is saved on the stack. Next 
you will see that HL is loaded with the address of the target string descriptor 
— I have used the long-winded index instructions despite what I have said 
above about size and space, although it should be possible to preserve the 
address of the target string on the stack. Instinct tells me that savings will be 
small, if any, and would produce a routine that would be difficult to 
understand. Another solution to the problem of running out of general 
purpose register pairs will be demonstrated in the next routine. 
We now enter a section already familiar with SortString and SortArray; lines 
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480-640 load B and C with the respective lengths (+1) of the target and test 
strings, while DE and HL are loaded with their addresses. In line 600 we save 
the address of the last byte of the test descriptor on the stack (next descriptor 
—1) for retrieval at a later stage. Note that HL and DE have now swapped 
roles, and HL is pointing to the target string, we have used only one EX 
DE,HL instruction. This is because the next section will need to make use of 
CP (HL), and there is no CP (DE) instruction. Speed is particularly 
important in the inner loop which follows because it will be repeated for every 
character that the routine examines. 

The inner loop 
Test begins by decrementing C: this is used to keep track of how many 
untested characters remain in the string. We loaded it with the length of the 
test string plus one before entering Test, so on the first pass we will detect if 
the test string was empty to begin with. If this is not the case, or on 
subsequent passes further characters remain to be tested, a jump to STR? is 
made. However, if the test string was empty or we have been through the 
loop enough times to have examined the whole of the test string, the routine 
can decide if a match has been found. In this event the routine decrements B 
to set the Z flag accordingly and then jumps to the end of the inner loop — if 
B does not reach zero then the target string is longer than the test string, and 
by definition a match is not possible; this information is passed in the Z flag. 
If the routine finds it has characters of the test string remaining to be 
compared with those of the target, it will have moved on to STR?, where it 
tests the length of the target string. Remember that it will not have gone 
through line 670 to get to this point, so B can be decremented to test for zero. 
If it reaches zero then one of two reasons may be the cause: if this is the first 
pass of the loop, Search has been passed an empty target string: or on 
subsequent passes we have successfully tested all the characters in the target 
string against the test string; a match has been found, the Z flag is set and we 
jump to NXLP? 
Lines 710-740 handle the comparison of characters and the wild card feature. 
On the first pass, the first, or on subsequent passes, further characters of the 
target string are moved into A. This is compared with &5C, the ASCII code 
for our wild card character — if they match then a jump is made to NXELM. 
If you would like Search to treat another character as wild, you can replace 
line 700 with CP X, (FE X), where X is the ASCII code of your chosen wild 
card symbol. 
Line 740 performs another comparison, this time the character of the target 
string is compared with the respective character of the test string, setting Z if 
the characters match. 
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NXELM increments the address pointers to both strings so as to point to the 
next characters, and then the conditional jump JR Z,TEST will return us to 
line 650 if either the target string had contained a wild card or the two 
characters matched; if this is the case we must continue to cycle through the 
TEST loop. 
You can see that there are three possible exits from the inner loop: the first, at 
line 670, occurs if all the characters of the test string have been examined: the 
second, at line 700, happens if all the target characters have been tested: the 
third is at line 770 — here an exit will only occur if we find two respective 
characters that do not match. The state of the Z flag indicates why we have 
exited; if set then we have found a matching string. 
We go to the trouble of arranging the Z flag to reflect a match because of lines 
780-800. If we jumped to different parts of the routine according to the result 
of the test, then we would have to have two sets of instructions to restore the 
stack pointer to its correct value. As written, lines 780-800 are reached in both 
match and non-match situations. 
We POP the 'next descriptor -1' address into DE and then increment it so as 
to point to the next test string descriptor. The counter is then restored to BC 
before the decision JR Z,RESLT is taken. If a match has been found, 
execution transfers to line 890, otherwise the counter is incremented and a 
test is made to see if a further pass of the outer loop is required. The 'already 
tested' address is placed in HL and compared with the new descriptor 
address; if they don't match then another loop is called for so we jump back to 
CHKAD. 

Returning to BASIC 
Line 880 is only ever reached by having tested all the strings in the field 
without finding a match. SET 7,B has the effect of making the counter 
negative, according to the integer variable convention of Locomotive BASIC. 
This is how we indicate that no match has been found. At RESLT, the 
address of the result variable is put into HL and the counter value stored at 
that address before returning to BASIC. 
You may notice that the counter has a maximum capacity of &7FFF (32767), 
but it is way beyond the memory capacity of the Amstrad to have a string 
array of that number of elements — the descriptor block alone would occupy 
96K bytes! 

Two further enhancements 
The next routine is designed to speed up a process that, although perfectly 
possible, would take some time in BASIC. ArrayShift is also a showcase for a 

80 



ENHANCING DATABASE 

Z80 instruction that we have not used so far — LDIR. One routine allows two 
functions to be implemented by BASIC: you can move the currently 
displayed file to the end of the database, thereby allowing a degree of manual 
sorting: the same routine also enables us to implement a delete function, 
completely removing the file on display from the records. 
Program 6.2 consists of the BASIC required to add move and delete 
commands to Database: only one line, 9010, replaces a line in the original. 
Please be aware that Program 6.2 is designed to be used in conjunction with 
Program 6.1, as it assumes that the Search routine is loaded into memory and 
places ArrayShift above it. Load the second version of Database, the one to 
which you have added Program 6.1, and then enter the lines of Program 6.2. 
Save the new program and then run it. If you have made an error when 
entering the new DATA statements you will be informed at this point. 

Program 6.2 
4192 PRINT #2,"1 - Alter I 2 -  Move to end 3 - Delete I"; 
4194 INPUT #2 ,T70: IF T7.<1 OR T7.>3 THEN 4192 
4196 ON T70 GOTO 4200,4300,4400 

4300 CALL HIMEM+369,@BASEMX7.,0),@BASE$(IML0),@BASE$(EXL1),F7.+1 
4310 GOTO 4260 

4400 PRINT #2,"Are you sure? (Y/N)"; 
4410 INPUT #2,T$ 
4420 IF T$<>"Y" AND T$<>"y" THEN 4260 
4430 CALL HIMEM+369,@BASE$(EX70,0),@BASE$(IM,0),@BASE$(EX70,1),F% 1 
44/10  FOR X=0 TO F% 
4450 BASE$(IMLX)="" 
4460 NEXT X 
4470 IF IM7/.0 THEN IM7/0=IM70-1 
4480 GOTO 4260 

9010 DATA 440 

9480 DATA DD,46,00,78,A7,C8 ,DD,6E,1109 
9490 DATA 02,DD,66,03,DD,5E ,04,DD,868 
9500 DATA 56,05,A7,ED,52,E5 ,EB,DD,1262 
9510 DATA 5E,06,DD,56,07,A7 ,ED,52,900 
9520 DATA 20,02,E1,C9,E5,FD ,E1,EB,1402 
9530 DATA D1,D5,54,5D,4E,23 ,7E,F5,1083 
9540 DATA 23,7E,23,C5,FD,E5 ,C1,ED,1305 
9550 DATA BO,C1,D1,2B,77,2B ,72,2B,940 
9560 DATA 71,D1,19,10,E4,C9 ,00 , 00 ,792 

• 
• 

If all is well, you will find that using the Edit option while examining a file will 
present you with three choices: altering the file as before, deleting the file or 
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placing it at the end. This last option is probably more useful than you think: 
having sorted by a particular field you can sift through the relevant entries 
placing the ones of interest at the end of the file where they can be printed out 
as a block. Delete means that you can remove a record when it is no longer of 
interest, reclaiming the memory space that it occupies into the bargain. 

Source code listing 6.2 
100 ;ArrayShift 
110 ;Moves all the fields of a selected file to the end of the 
120 ;array, shifting all the other files up to fill the gap. 
130 ;Requires the addresses of the the last item in the first 
140 ;field and the selected item in the first and second 
150 ;field, plus the number of fields to be passed by BASIC. 
160 ;Position independent - corrupts AF, BC, DE, HL, IY 

DD4600 170 	LD 	B,(IX+0) 	;Fetch number of fields for use as 
78 180 LD 	A,B ;outer loop counter. 
A7 190 AND A ;Safety check for zero. 
C8 200 RET 	Z 
DD6E02 210 LD 	L,(IX+2) ;Load HL with address of selected 
DD6603 220 LD 	H,(IX+3) ;item in second field. 
DD5E04 230 LD 	E,(IX+4) ;Load DE with address of last item 
DD5605 240 LD 	D,(IX+5) ;in first field. 
A7 250 AND A ;Makes EL contain offset from end 
ED52 260 SBC 	IIL,DE ;of one field to begining of next. 
E5 270 PUSH HL ;Save offset on stack. 
EB 280 EX 	DE,IIL ;Field 1, last item address into Fl. 
DD5E06 290 LD 	E,(IX+6) ;Field 1, selected item address 
DD5607 300 LD 	D,(IX+7) ;into DE. 
A7 310 AND 	A 
ED52 320 SBC 	IEL,DE ;Calculate number of descriptor 
2002 330 JR 	NZ, CONT ;bytes to move, and if zero, 
El 340 POP 	HL ;restore stack pointer and 
C9 350 RET 	; return to BASIC. 
E5 360 CONT PUSH TEL ;If not zero, place number of bytes 
FDE1 370 POP 	IY ;to move into IY. 
EB 380 EN 	DE,HL ;Selected item address into HL. 
D1 390 POP 	DE ;Get offset into DE. 
D5 400 raID PUSH DE ;Save DE for begining of loop. 
54 410 LD 	D,H ;DE-HL. 
5D 420 LD 	E,L 
4E 430 LD 	C,(}IL) ;Fetch selected descriptor bytes, 
23 
7E 

440 
450 

INC 	III, 
LD 	A, (HL) 

;and point TEL to next descriptor. 

F5 460 PUSH AF ;Save descriptor byte 2 on stack. 
23 470 INC 	}IL 
7E 480 LD 	A,(IIL) 
23 
C5 

490 
500 

INC 	III, 
PUSH BC ;Save loop counter and byte 1. 

FDE5 510 PUSH IY ;Number of bytes to be moved into 
Cl 520 POP 	BC ;BC. 
EDBO 530 LDIR ; Block move. 
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Cl 540 POP 	BC ;Salvage loop counter and selected 
D1 550 POP DE ;item descriptor bytes from stack. 
2B 560 DEC 11 ;Point 11 to last descriptor byte. 
77 570 LD (HL),A ;Replace last descriptor with 
2B 580 DEC 11 ;"moved" string descriptor bytes, 
72 590 LD (IIL),D ;and in the process point III, to 
28 600 DEC HL ;byte 1 of last descriptor. 
71 610 LD (HL),C 
D1 620 POP DE ;Get offset from stack. 
19 630 ADD HL,DE ;HL points to next selected item. 
10E4 640 DJNZ NXFLD ;If more fields, do loop again. 
C9 650 RET 

The ArrayShift routine 
Source Listing 6.2 gives the assembler mnemonics of the 70 bytes of code that 
make up the routine ArrayShift. Four parameters are required from BASIC: 
F%+1: the number of fields, counting from 1. 
@BASE$(EX%,1): the address of the descriptor of the second field of the 
currently displayed file. 
@BASE$(EX%,0): the address of the descriptor of the first field of the 
currently displayed file. 
ArrayShift has a two-loop structure, although the inner loop consists of only 
one instruction, LDIR. The outer loop rearranges each field in turn. As 
before, only the descriptor bytes are moved, not the strings themselves. 
All the values required are calculated in the preparation section, lines 
170-390. There are also two error traps in order to cope with some of the bad 
parameters that may be sent by BASIC. Lines 170-200 fetch the number of 
fields and place them into both B and A. B is to be used as the outer loop 
counter, while A is tested for zero. If the number of fields sent to the routine 
happens to be zero, then we return immediately, having done nothing. 
Next, the address of the descriptor of the last item in the first field is 
subtracted from the address of the selected item's descriptor (the one we wish 
to move) in the first field. This results in a value which is the distance between 
the end of one field's descriptors and the beginning of the next. We save this 
value on the stack: it corresponds to the number of bytes that we are going to 
have to move so that the descriptors above the selected item move down in 
memory to fill the gap. If this value happens to be zero, it is clear that we are 
trying to move the last item to the end, which is pointless. It would also cause 
a nasty crash for reasons I will explain in a moment. So, if the result of the 
subtraction is zero, no jump is made at line 330. The stack pointer is restored 
to its correct value and we return to BASIC. 
If we do reach CONT, line 360, the result of the subtraction is placed into the 
IY register. This saves us storing a value in RAM which will be required 
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inside the loop. The moving of data between the index and general purpose 
register pairs, however, is not helped by the Z80 instruction set — PUSH and 
POP are the only sensible way to do this, although they are rather 
time-consuming at 15 and 14 machine cycles respectively. EX DE,HL places 
the address of the first item we wish to shift into HL: POP DE retrieves the 
offset calculated earlier. We are now ready to enter the outer loop. 

The outer loop of ArrayShift 
The offset will only be used at the end of the loop, so it is put back on the 
stack to free DE, which is then loaded with HL's contents, so that it points to 
the descriptor which is to be moved. We now need to collect the three 
descriptor bytes so that they can be placed at the end of the field after moving 
the other descriptors. The first is placed in C and HL is incremented; the 
second is placed in A and saved on the stack. HL is incremented again, and 
the third descriptor byte to which HL now points is placed in A, where it will 
be safe for the time being. One more increment of HL and it conveniently 
points to the next descriptor block. Line 500 saves BC, which contains the 
loop counter and the first descriptor byte, on the stack. The final two 
instructions before the inner loop copy the contents of IY into BC. 
Let us take stock of the situation. The following information is saved on the 
stack: the offset to the next field, the second descriptor byte, the first 
descriptor byte and the loop counter. DE points to the descriptor block which 
is to be removed to the end; HL points to the next descriptor block, while BC 
holds the number of bytes that need to be moved. 

The inner loop 
LDIR, line 530, has the following effect: the byte pointed to by HL is placed 
at address DE; HL and DE are incremented so that they point to the next 
bytes, and BC is then decremented. If BC becomes zero then LDIR ceases 
and control is passed to the next operation. However, if BC does not reach 
zero then the whole process is repeated over and over again until it does. 
Therefore, after the LDIR instruction we will have moved all the descriptor 
bytes of the current field, tha come above the descriptor that we wish to 
displace, down in memory by three locations; the RAM that contained the 
original descriptor holds the next, the second has been overwritten by the 
third, and so on. At the end of the field there are two copies of the last 
descriptor bytes. 
You can see from the description of LDIR that if BC had held zero, the first 
time it was decremented it would have become FFFF hex — and LDIR would 
have moved the entire RAM contents of your computer, including all the 
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BASIC program, the stack and even ArrayShift, by three locations. I think 
you'll agree that this illustrates the efficacy of checking for a request to move 
a file to the end, when it is already at the end! 

Ending the outer loop 
Remember that the last three bytes of the descriptor block for the field just 
processed by the inner loop still hold their original value; we will now proceed 
to overwrite them with the carefully saved original three bytes of the 
descriptor of the item we are moving. 
The loop counter and first byte are salvaged from the stack (POP BC), and 
then POP DE places the second byte, saved with the PUSH AF instruction in 
line 460, into D. At the end of the LDIR instruction, HL was left pointing to 
the byte after the location in which we want to deposit the displaced 
descriptor. DEC HL has the effect of pointing HL to where we wish to place 
the third byte: this was stored in A, so LD (HL),A overwrites the third 
descriptor byte. Further decrements of HL allow us to place the contents of D 
and C in their right places. 
The whole of one field's descriptors have now been shifted: the item that we 
wanted to move has been set aside, the subsequent descriptors shifted along 
to fill the gap, and the displaced descriptor' put at the end. We now need to 
retrieve the offset value from the stack and add it to HL so that it points to the 
required item in the next field. B is again holding the loop counter. Because 
the number of fields will be an eight-bit number, DJNZ is all that is required 
to terminate the outer loop. If another field is to be processed, we jump back 
to NXFLD (NeXt FieLD); the registers DE, HL and IY hold all the 
information required for another pass. 
ArrayShift is simplified by its use of the LDIR instruction, although this does 
mean we are forced to use certain registers. Without LDIR we would need to 
use LD A ,(HL); LD (DE),A; INC DE; INC HL; DEC BC; LD A,B; OR C; 
JR NZ — 52 machine cycles for each pass of the loop. LDIR only takes 21 
cycles per pass, and has the additional bonus of not corrupting the A register. 

Tying up the loose ends 
Database is now almost complete; we have a number of useful routines which 
allow the information to be manipulated swiftly. One final facility will be of 
use, not only to Database but also to many other BASIC programs. The string 
sorting method gives lower case characters a higher value than upper case. 
Forcing all inputted information to upper case is the simplest solution, and to 
this end we could use the UPPER$ function of Locomotive BASIC, but this 
would complicate the program. 
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With a very short machine code routine we can redefine the lower case keys 
so that they yield upper case letters. This has the advantage that the INPUT 
statements print out the keys as they appear in the file. 

Pulling yourself up by your bootstraps 
Redefining the keys need only be done once. It is also time to tidy up the 
BASIC by removing the code loading routine and the DATA statements, so 
Program 6.3 is written as a 'bootstrap' loader for the rest of Database. Let us 
begin with a description of how to create the final version of the Database 
program on cassette — disk users will find all the information they require but 
need not take any notice of the `!' symbols or mess around getting the 
programs in order. 

Program 6.3 
100 REM ****************************** 

101 REM ** 	Database Bootstrap 	** 
102 •REm ****Irk*** 	***Irk** 	A A k******* 
110 MODE 0 
120 LOCATE 3,12 
130 PRINT "Loading Database" 
140 WHILE 1 
150 READ BYTE$:IF BYTES-"END" THEN 180 
160 CODE$=CODE$+CHR$(VAL ("&"+BYTE$)) 
170 WEND 
180 CALL PEEK (@CODE$+1)+256*PEEK(@CODE$+2) 
190 OPENOUT "DUMMY" 
200 MEMORY HIMEM-440 
210 LOAD "!CODE",HIMEM+l 
220 CLOSEOUT 
230 RUN "!DBBASIC" 
240 DATA 0E,1A,OC,79,FE,48,C8,CD 
250 DATA 30,BB,47,D6,41,D6,1A,30 
260 DATA F1,79,CD,27,BB,18,EB,END 

Enter the Database Bootstrap routine, Program 6.3, and check the DATA 
statements with care — there is no checksum involved so an error here could 
well lead to a crash. Take a clean cassette and save this new program at the 
beginning. Now run the BASIC. When you hear the cassette relay click to 
start the tape, press ESC. You should find that the keyboard behaves as if 
CAPS LOCK is engaged — try pressing it and you should still get upper case 
characters. If this is not the case check the DATA statements. 
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When you have a working version of the bootstrap program, load the last 
version of Database, complete with the Search, Move and Delete 
modifications, and run it. Once the 'load a database' message appears, 
ESCape from the program, and enter the following line: 

START=HIMEM+ 1:SAVE "CODE",B,START,440 

Now replace the cassette on which Bootstrap was saved, wound past the first 
program; press play and record and then any key. The machine code will then 
be saved on tape, immediately following the first BASIC program. Now enter 
the following lines of BASIC: 

DELETE 1060 
DELETE 8000-9560 

At this point you may want to list the program and delete the parts that 
handle lower case letters, such as OR T$="y" in line 1090. 
The final step is to SAVE "DBBASIC" on the cassette, following the 
machine code. Rewind the tape and CATalogue it to check that you have a 
good recording. The tape now contains the final version of Database. 
The Bootstrap program demonstrates a different method of using machine 
code, which is suitable for short routines. If the @ prefix is used on a variable 
name, the address of the variable (or in the case of strings, the descriptor) is 
returned, rather than the variable itself. This not only works for CALL 
statements, as used earlier, but also as a function. By creating a string which 
contains machine code bytes rather than characters, we can store a machine 
code routine using the BASIC variables system. This saves us having to lower 
HIMEM, and we can find the location of the code with the @ prefix as shown 
in line 180. 
Two other features are demonstrated by Program 6.3. The OPENOUT 
"DUMMY" statement, along with the CLOSEOUT (lines 190 and 220), have 
the effect of permanently reserving a buffer area for cassette operations. This 
ensures that you don't enter too much data and then find that you run out of 
memory when you come to save it on tape, and it also 'avoids a garbage 
collection occurring every time you wish to use tape. 
The second point for cassette users concerns the ! suffix on file names, which 
disables the prompt messages and avoids the need to "PRESS ANY KEY" 
when you wish to load a number of consecutive files from tape. This does not 
appear to be mentioned in my User manual, although it is documented in the 
Concise BASIC Specification. 
CapsLock (Source Listing 6.3) revolves round two firmware routines. &BB30 
is the location of KM GET SHIFT. By loading A with a key number (see 
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Source code listing 6.3 

100 ;CapsLock 
110 ;Redefines all lower case keys so that they yield 
120 ;upper case characters 
130 ;No entry requirements 
140 ;Position independent - corrupts AF, BC and HL. 

OE1A 150 CAPS 	LD 	C,#1A ;Load C with first key number -1. 
OC 160 NXKEY INC C .;Let C equal next key number. 
79 170 LD A,C ;Put key number into A. 
FE48 180 CP #48 ;If last key done, return. 
C8 190 RET Z 
CD3OBB 200 CALL /BB30 ;Get current shifted translation. 
47 210 LD B,A 
D641 220 SUB #41 ;If it is not an upper case letter, 
D61A 230 SUB #1A ;jump back for next key. 
30F1 240 JR NC,NXKEY 
79 250 LD A,C ;Put new translation into C. 
CD27BB 260 CALL #BB27 ;Alter unshifted translation. 
18EB 270 JR 	NXKEY ;Jump back for next key. 

Appendix III of the User manual) and calling GET SHIFT, the ASCII value 
of that key is returned in A. &BB27 is KM SET TRANSLATE. If you load A 
with a key number and B with an ASCII value, and call SET TRANSLATE 
the character yielded by the key will be altered. 
CapsLock itself is simple: it tests keys 26 to 71 (all the letters are contained in 
this range) to see if they give capital letters in the shifted mode, and if so it 
redefines the unshifted translation to match. C is used as a form of counter, as 
B is used by the SET TRANSLATE routine. 
Note the use of a conditional return, RET Z. This and the other conditional 
returns — NZ, C, NC, M, N, PE, PO — are useful, but always remember that 
the stack pointer must be pointing to the return address; if you have stored 
anything on the stack you will need to retrieve it before a RET of any kind. 
For this reason, conditional returns are more likely to be productive in short 
routines or subroutines. 
If you use CapsLock in other programs, you may like to know how to reverse 
the process and restore the keyboard to normal. The easiest way is to CALL 
&BBOO, KM INITIALISE. This sets up the keyboard tables exactly as after 
switch-on: it corrupts AF, BC, DE and HL. Other firmware routines that may 
be of use in redefining the keyboard are: 

&BB2A — GET TRANSLATE: as GET SHIFT for unshifted keys. 
&BB2D — SET SHIFT: as SET TRANSLATE for shifted keys. 
&BB33 — SET CONTROL: as SET TRANSLATE when CTRL is pressed. 
&BB36 — GET CONTROL: as GET SHIFT when CTRL is pressed. 

These, as well as SET TRANSLATE and GET SHIFT, all corrupt AF and 
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HL. Four more routines with similar responsibilities are: 

&BB39 — SET REPEAT: defines whether a key should be allowed to repeat. 
A must contain the key number; if B is zero the key will not repeat, if &FF it 
will. Corrupts AF, BC and HL. 

&BB3C — GET REPEAT: tells you if a key is set to repeat or not. The 
answer is contained in the Z flag; if false the key repeats. AF and HL are 
corrupted. 

&BB3F — SET DELAY: sets the delay and repeat parameters. H should 
hold the delay and L the repeat values in 50ths of a second. Affects all 
repeating keys, and corrupts AF. 

&BB42 — GET DELAY: returns the delay and repeat parameters'in H and 
L respectively. Corrupts AF. 

Developing the Database program has demonstrated more than just sorting 
techniques; we have seen how to search and move blocks of data around, as 
well as how to redefine the keyboard. I hope you will adapt the program to 
suit your own requirements. 
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CHAPTER 7 

Graphics — a Circle Routine 

The purpose of this chapter is two-fold: not only does it present a routine 
which will be profitable in programs that use graphics, but also the manner in 
which the routine works demonstrates more useful machine code methods; 
you will find these helpful in many other applications. 
The routine, called Circle, adds a fupction to the Amstrad which is not 
available as a single command in Locomotive BASIC. Plotting 'a circle 
requires some lines of program like this: 

100 FOR P=—R to +R 
110 PLOT XX+P,YY+SQR(R*R—P*P) 
120 NEXT P 

This will, given suitable values for R (the radius), XX and YY (the centre of 
the circle), plot a passable semi-circle. If you add a second loop to plot 
negative Y axis co-ordinates, the result will be a circle. To enhance this 
method, PLOT the first point and then use the DRAW command to achieve a 
continuous shape. If you try writing a routine to create a circle using the 
above method, you will find that drawing one which fills the screen will take 
about 30 seconds, which is painfully slow for most purposes. 
How can we speed up this process? Although the Locomotive BASIC 
resident in the Amstrad is a fast version of the language, if we can by-pass the 
BASIC interpreter we will gain a great speed advantage. A purpose-written 
routine in machine code will achieve this. However, the formula which needs 
to be used to plot a circle involves some fairly complex arithmetic. Consider 
this: 

R*R = X*X + Y*Y 

This relationship is true for all the points around the edge of a circle, centred 
at X=0, Y=0, of which the radius is R, where X and Y are the horizontal and 
vertical co-ordinates. We can re-write this as: 

Y*Y = R*R — X*X 
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or: 

Y = SQUARE ROOT (R*R — X*X) 

From this formula you can see that to calculate the positions which need to be 
plotted we must be able to multiply values together, and even more difficult, 
find the square root of a number. The BASIC interpreter can do this — and 
so can we; but because the BASIC works to a high degree of accuracy we can 
save time by limiting our calculations to the scale of numbers we are likely to 
meet. This, and bypassing the interpreter, are the two main reasons why the 
Circle routine can work about 20 times faster than the equivalent BASIC 
method. 
Now let's prove that it can be done. Program 7.1 should be entered, along 
with the code loading routine from Chapter 4. Save the program and run it; 
provided there are no mistakes in the data statements you will be asked to 
enter an origin (the centre of the circle), and then the program will draw a 
series of concentric circles. As written, the code needs to be loaded from 
address A600; it is not position independent, although you can change it to 
run at any other location. 

Program 7.1 
100 REM ************************AA 	 
101 REM ** 	Circle Demo 
102 REM ****AAAkAAAAAAlc*********** 
110 MEMORY A66F:GOSUB 8000 
120 WHILE 1 
130 INPUT "ORIGIN - X";X% 
140 INPUT "ORIGIN - Y";Y% 
150 CLS 
160 FOR R70=20 TO 200 STEP 20 
170 CALL &A580,X70,11,R7o 
180 NEXT R% 
190 WEND 
200 END 

9000 REm ***-A-A**A-******-A-A-k******** 	 

9001 REM ** 	Circle Data 	** 
9002 RENT ************A*************), 	 

9010 DATA 240 
9020 DATA DD,7E,00,A7,C8,DD,4E,02,1015 
9030 DATA DD,46,03,DD,5E,04,DD,56,920 
9040 DATA 05,26,00,6F,19,E5,C5,E5,834 

** 
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9050 DATA C5,EB,E5,C5,16,00,5F,A7,1142 
9060 DATA ED,52,E5,C5,E5,C5,CD,35,1429 
9070 DATA A6,D5,DD,21,02,00,DD,39,913 
9080 DATA 3D,CD,35,A6,DD,6E,FE,DD,1291 
9090 DATA 66,FF,A7,ED,52,E5,FD,E1,1550 
9100 DATA F5,3E,80,0E,40,11,00,40,594 
9110 DATA 18,06,CD,35,A6,FD,E5,E1,1161 
9120 DATA ED,52,38,02,81,81,91,CB,983 
9130 DATA 39,20,EF,41,4F,F1,11,10,746 
9140 DATA 00,DD,19,DD,66,FB,DD,6E,1151 
9150 DATA FA,5F,19,EB,DD,66,F9,DD,1398 
9160 DATA 6E,F8,E5,09,CD,45,A6,E1,1261 
9170 DATA E5,A7,ED,42,D5,11,FC,FF,1436 
9180 DATA DD,19,D1,CD,45,A6,E5,DD,1345 
9190 DATA 66,FF,DD,6E,FE,11,F8,FF,1462 
9200 DATA DD,19,16,00,5F,A7,ED,52,849 
9210 DATA EB,E1,CD,45,A6,E1,09,D5,1347 
9220 DATA 11,FC,FF,DD,19,D1,CD,45,1253 
9230 DATA A6,A7,C2,B0,A5,11,14,00,905 
9240 DATA DD,19,DD,F9,C9,2E,00,67,1066 
9250 DATA 5F,16,00,06,08,29,30,01,221 
9260 DATA 19,10,FA,EB,C9,F5,C5,D5,1382 
9270 DATA E5,DD,6E,00,DD,66,01,DD,1105 
9280 DATA 5E,02,DD,56,03,CD,CO,BB,990 
9290 DATA E1,D1,DD,75,00,DD,74,01,1110 
9300 DATA DD,73,02,DD,72,03,D5,E5,1118 
9310 DATA CD,F6,BB,E1,D1,C1,F1,C9,1707 

The method 
The circle is plotted in four sections, to keep calculation time to a minimum. 
The method is best described by an example. Study Figure 7.1. It represents 
the circle we wish to draw, of radius 100, centered on co-ordinates 0,0. 
Three-quarters of the circle will not appear on the screen, but we can still 
work out the theoretical positions that need to be plotted. To plot an arbitrary 
point, which we will call A, marked in the top left sector, we can apply our 
formula using an arbitrary value for X: 

Y = SQUARE ROOT (R*R — X*X) 
= SQUARE ROOT (10000 — 3600) 
= SQUARE ROOT (6400) 
= 80 
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Figure 7.1 
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Having calculated the relationship between X and Y, it is much simpler to 
find points B, C and D. If A has the co-ordinates X,Y, then 

B=X,—Y: C=X,—Y: and D=—X,Y. 

So there are three more points in the circle which we can calculate by simply 
changing the signs! Therefore 

A=60,80: B=60,-80, C=60,-80 and D= —60,80 

This saves time, because having calculated the value of Y for a particular 
value of X, we can plot a point in each of the four quadrants. If the circle is to 
have an origin somewhere other than 0,0, the co-ordinates of the origin can 
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Source code listing 7.1 
100 ;Circle 
110 ;Draws a circle with a maximum radius of 255, centred on 
120 ;definable user co-ordinates, on the graphics screen. 
130 ;Uses the current „Graphics pen, and works in any mode. 
140 ;Requires the X and Y co-ords and the radius to be passed 
150 ;by BASIC. Corrupts all registers. 

A580 DD7E00 160 	LD 	A,(IX+0) 	;Load A with radius, 

A583 A7 170 AND 	A 	;If radius is 0, return. 

A584 C8 180 RET 	Z 
A585 DD4E02 190 LD 	C,(IX+2) 	;BC with Y co-ord, 
A588 DD4603 200 LD 	B,(IX+3) 
A58B DD5E04 210 LD 	E,(IX+4) 	;and DE with X co-ord. 

A58E DD5605 220 LD 	D,(IX+5) 
A591 2600 230 LD 	H,0 
A593 6F 240 LD 	L,A 
A594 19 250 ADD 	HL,DE 	;HL now equals X+radius. 

A595 E5 260 PUSH HL 	;Save first two sets of starting 

A596 C5 270 PUSH BC 	;co-ords on the stack. 
A597 E5 280 PUSH HL 
A598 C5 290 PUSH BC 
A599 EB 300 EX 	DE,111, 	;Load HL with X co-ords. 
A59A E5 310 PUSH HL 	;Save X and Y co-ords on stack. 
A59B C5 320 PUSH BC 
A59C 1600 330 LD 	D,0 	;Load DE with radius, 

A59E 5F 340 LD 	E,A 
A59F A7 350 AND 	A 
A5A0 ED52 360 SBC 	HL,DE 	;HL now equals X-radius. 

A5A2 E5 370 PUSH HL 	;Save second set of starting 
A5A3 C5 380 PUSH BC 	;co-ords on the stack. 
A5A4 E5 390 PUSH 11 
A5A5 C5 400 PUSH BC 
A5A6 CD35A6 410 CALL SOOFA 	;Let DE equal A*A. 
A5A9 D5 420 PUSH DE 	;Save radius squared value on stack. 

A5AA DD210200 430 LD 	IX,2 	;Point IX to data saved on stack. 

A5AE DD39 440 ADD 	IX,SP 
A5B0 3D 450 DRWLP DEC 	A 	;Decrement the X offset. 
A5B1 CD35A6 460 CALL SOOFA 	;Get the square of the X offset. 
A5B4 DD6EFE 470 LD 	L,(IX-2) 	;Load HL with radius squared. 

A5B7 DD66FF 480 LD 	H,(IX-l) 
A5BA A7 490 AND 	A 
ASBB ED52 500 SBC 	HL,DE 	;HL now equals X offset squared 
A5BD E5 510 PUSH HL 	;minus radius squared, and moved 

A5BE FDE1 520 POP 	IY 	;into IY. 
A5C0 F5 530 PUSH AF 	;Save loop counter. 

A5C1 3E80 540 LD 	A,128 	;This section finds the square root 

A5C3 0E40 550 LD 	C,64 	;of the value in IY. See text. 

A5C5 110040 560 LD 	DE,#4000 
A5C8 18Q6 570 JR 	FRST 
ASCA CD35A6 580 SQRLP CALL SOOFA 
ASCD FDES 590 PUSH IY 

A5CF El 600 POP 	HL 
ASDO ED52 610 FRST SBC 	HL,DE 	;NB - carry always cleared by SWFA. 

A5D2 3802 620 JR 	C,LOWR 
A5D4 81 630 ADD 	A,C 	;Double addition saves a jump. 

A5D5 81 640 ADD 	A,C 
A5D6 91 650 LOWR SUB 	C 
A5D7 CB39 660 SRL C 
A5D9 20EF 670 JR 	NZ,SQRLP 
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A5DB 	41 680 LD 	B,C 
A5DC 	4F 690 LD 	C,A ;C contains approximate SQR IY. 
A5DD 	Fl 700 POP 	AF ;Retrieve loop counter. 
A5DE 	111000 710 LD 	DE,16 ;Point IX to first segment data. 
A5E1 	D019 720 ADD 	IX,DE 
A5E3 	DD66FB 730 LD 	MIX-5) ;Load HL with X co-ord. 
A5E6 	DD6EFA 740 LD 	L,(IX-6) 
A5E9 	5F 750 LD 	E,A ;DE with X offset (D already 0). 
A5EA 	19 760 ADD 	HL,DE 
A5EB 	EB 770 EX 	DE,HL ;DE now X axis position 
ASEC 	DD66F9 780 LD 	H,(IX-7) ;Load HL with Y co-ord. 
A5EF 	DD6EF8 790 LD 	L,(IX-8) 
A5F2 	E5 800 PUSH HL ;Save Y co-ord on stack. 
A5F3 	09 810 ADD 	HL,BC ;IIL now Y axis position. 
A5F4 	CD45A6 820 CALL PTSEG ;Plot segment 1. 
A5F7 	El 830 POP 	Ill, ;Load IlL with Y co-ord, but 
A5F8 	E5 840 PUSH HL ;keep it on the stack. 
A5F9 	A7 850 AND 	A 
ASFA 	ED42 860 SBC 	HL,BC ;HL now Y minus C 
A5FC 	D5 870 PUSH DE ;Move IX pointer to next,  
A5FD 	11FCFF 880 LD 	DE,-4 ;segment's data. 
A600 	DD19 890 ADD 	IX,DE 
A602 	D1 900 POP 	DE 
A603 	CD45A6 910 CALL PTSEG ;Plot segment 2. 
A606 	E5 920 PUSH HL ;Save Y minus C 
A607 	DD66FF 930 LD 	H,(IX-1) ;Load HL with X co-ord. 
A60A 	DD6EFE 940 LD 	L,(IX-2) 
A6OD 	11F8FF 950 LD 	DE,-8 ;Move IX pointer to segment 3 data. 
A610 	DD19 960 ADD 	IX,DE 
A612 	1600 970 LD 	D,0 ;Load DE with X offset. 
A614 	5F 980 LD 	E,A 
A615 	A7 990 AND 	A 
A616 	ED52 1000 SBC 	HL,DE 
A618 	EB 1010 EX 	DE,HL ;DE now X minus offset. 
A619 	El 1020 POP 	III. ;Retrieve Y minus C. 
A61A 	CD45A6 1030 CALL PTSEG ;Plot segment 3. 
A61D 	El• 1040 POP 	HL ;Get Y co-ord from stack. 
A61E 	09 1050 ADD 	HL,BC ;III, now Y plus C. 
A61F 	D5 1060 PUSH DE ;Point IX to last data block. 
A620 	11FCFF 1070 LD 	DE,-4 
A623 	DD19 1080 ADD 	IX,DE 
A625 	D1 1090 POP 	DE 
A626 	CD45A6 1100 CALL PTSEG ;Plot last segment. 
A629 	A7 1110 AND 	A ;Test X offset for zero. 
A62A 	C2B0A5 1120 JP 	NZ,DRWLP ;If not, another pass. 
A62D 	111400 1130 LD 	DE,20 ;Restore the stack pointer to 
A630 	DD19 1140 ADD 	IX,DE ;its original condition. 
A632 	DDF9 1150 LD 	SP,IX 
A634 	C9 1160 RET 	;Return to BASIC 

1170 	;---- Subroutine to load DE with A*A ---- 
A635 	2E00 1180 SOOFA LD 	L,0 ;Put A in top 8 bits of HL, 
A637 	67 1190 LD 	H,A 
A638 	5F 1200 LD 	E,A ;and bottom 8 bits of DE. 
A639 	1600 1210 LD 	D,0 
A63B 	0608 1220 LD 	B,8 ;Counter for all powers of 2. 
A63D 	29 1230 SHIFT ADD 	HL,HL ;Shifts HL one bit left. 
A63E 	3001 1240 JR 	NC,DONE? ;If no power in carry, jump. 
A640 	19 1250 ADD 	HL,DE ;Add orginal value to L. 
A641 	10FA 1260 DONE? DJNZ SHIFT ;Test for further powers. 
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A643 
A644 

EB 
C9 

1270 	EX 	DE,HL 	;answer into DE. 
1280 	RET 
1290 	Subroutine to draw from present position 
1300 ; 	in segment to new co-ordinates. 	 

A645 F5 1310 PTSEG 	PUSH AF 	;Save almost everything! 
A646 C5 1320 PUSH BC ;(The ROM routines corrupt 
A647 D5 1330 PUSH DE ;(AF, BC, DE and HL.) 
A648 E5 1340 PUSH HL 
A649 DD6E00 1350 LD 	L,(IX+0) ;Get last point drawn to. 
A64C DD6601 1360 LD 	H,(IX+1) 
A64F DD5E02 1370 LD 	' E,(IX+2) 
A652 DD5603 1380 LD 	D,(IX+3) 
A655 CDCOBB 1390 CALL 11813C0 ;Move graphics cursor there. 
A658 El 1400 POP 	HL ;Get new position from stack, 
A659 D1 1410 POP 	DE 
A65A DD7500 1420 LD 	(IX+0),L ;save in data area, 
A65D DD7401 1430 LD 	(IX+1),H 
A660 DD7302 1440 LD 	(IX+2),E 
A663 DD7203 1450 LD 	(IX+3),D 
A666 D5 1460 PUSH DE ;and put back on stack. 
A667 E5 1470 PUSH HL 
A668 CDF6BB 1480 CALL I/BBF6 ;Draw line to new position. 
A66B El 1490 POP 	HL ;Salvage register contents. 
A66C D1 1500 POP 	DE 
A66D Cl 1510 POP 	BC 
A66E Fl 1520 POP 	AF 
A66F C9 1530 RET 

have the X and Y values added to or subtracted from them. 
To construct a circle we need to find the value of Y for each value of X from 
the origin to the radius. These co-ordinates, plus those from the other three 
quadrants, are the points around the edge of the circle. 
If we were simply to plot the values, the result would not be a continuous 
circle — where a change of one unit of X resulted in a larger change in Y, a 
series of unconnected dots would result. The way round the problem is to 
draw lines from one point to the next, but this involves us storing the 
co-ordinates of the last point drawn to of each quadrant — 8 co-ordinates, 16 
bytes. Circle uses the stack area to store these values. 

Circle machine code in detail 
Lines 160-250 fetch the integer parameters sent by BASIC (X%,Y% and 
R%); they are then used to calculate the starting co-ordinates of the first two 
quadrants which are pushed onto the stack. The co-ordinates of the origin are 
stacked, and then the third and fourth sets of starting co-ordinates are 
calculated and pushed. The final piece of data which we wish to store is the 
value R*R, so that we don't have to calculate it each time we need it: we will 
use subroutine SQOFA (SQuare OF A), more of which in a moment. 
We now have a number of important values stored on the stack; in order to be 
able to access these easily, IX is pointed to (SP+2) by the instructions LD 
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IX,2: ADD IX,SP (lines 430-440). We can now get at our data by the use of 
the index instructions. 

Multiplying in binary 
SQOFA (lines 1180-1320) is used a number of times. Its purpose is to multiply 
the value in A by itself and return with the answer in DE, but it can easily be 
modified to act as a general purpose multiply. routine. 
First look at this binary multiplication: 

Decimal Binary 
137 10001001 

*5 00000101 
137 (times 1) 10001001 

+548 (times 4) 1000100100 
=685 1010101101 

Study this with care. In order to multiply 137 by five it is first multiplied by 
one, and to this is added 137 multiplied by four. It is easy to multiply by four 
in binary, it's just like multiplying by 100 in decimal. We simply move all the 
digits two spaces to the left and add two zeroes. We know it should be 
multiplied by four because bit 2 of the second value, five, is set. Similarly, to 
multiply a number, N, by 137, we split the sum into 

N*137 = N*(128 + 8 + 1) 

and multiplication by 128 and 8 is simply a matter of shifting digits and adding 
trailing zeroes in binary. Notice that we can easily see how to break any 
binary number into these component parts — it's just a case of looking to see 
which bits are set. We can therefore carry out multiplication in machine code 
by shifting bits and using addition. 

Lines 1180-1210 load H and E with A, and L and D with 0. The B register is to 
be used as a counter, and it will be decremented by one for each power that is 
processed. SHIFT, line 1230, adds HL to itself; this has the effect of shifting 
the contents one bit left as it is in effect, a multiply-by-two operation. The 
MSB of H moves into the carry. The first pass of the loop will indicate 
whether A will need to be multiplied by the eighth power of two: if this is the 
case, DE is added to HL, although this will only perform ADD L,E (but 
register a carry in bit 0 of H) as D contains zero. 
Line 1260, DONE? decrements and tests the loop counter — the loop is 
performed eight times. Each time the ADD HL,HL instruction is performed, 
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the value in E will be shifted left one bit — at the end of the loop, the value 
that we added to E on the first pass (either A or nothing) will have been 
shifted left eight times; it will occupy the top eight bits of the HL pair and will, 
in effect, have been multiplied by 256. 
During subsequent passes, the lower bits of the original value of H will be 
shifted into the carry, causing further additions of E to L; these will be shifted 
left the correct number of times so that, eventually, HL contains A*A. EX 
DE,HL moves the answer for the convenience of the rest of the program, and 
then a RET instruction is carried out. 
You can modify SQOFA to multiply any eight-bit numbers together. The 
principle can also be extended to deal with larger numbers, but remember 
that the answer may well overflow a register pair — a 16-bit value multiplied 
by an eight-bit value may result in up to a 24-bit number; 16-bit*16-bit=32 
bits, and so on. 

Calculating the co-ordinates 
Let us now look at the main body of the circle routine, which is a loop 
beginning at line 450. The X co-ordinate offset, held in A, is taken as the loop 
counter, and begins at one less than the radius. X*X is calculated with the aid 
of SQOFA, and this value is subtracted from the R*R value, retrieved from 
the data area. We now have a value of which we wish to find the square root; 
this is achieved by lines 580-670. I will explain these in detail later on — for 
now, note that by line 690, BC contains the square root, and therefore the Y 
axis offset for the current value of the loop counter. 
IX is pointed to the first set of co-ordinates, the last point drawn to in the first 
quadrant. On the first pass of the loop these will be XX+R,YY, where XX 
and YY are the origin of the circle and R the radius. The new X,Y 
co-ordinates are calculated by adding the loop counter to XX and the Y offset 
(stored in BC) to YY: these are placed in DE and HL respectively. 

Drawing the circle 
A CALL to PTSEG (PrinT SEGment) has the following effect — the 
graphics cursor is moved to the last point drawn to in each quadrant, the new 
position stored and then drawn to. 
To perform the graphics functions we use ROM routines. The routine to 
move the graphics cursor, without plotting the actual positon, is GRA MOVE 
ABSOLUTE, &BBCO. This requires the X and Y co-ordinates to be sent in 
DE and HL respectively, and corrupts AF, BC, DE, and HL. This explains 
the need for all the PUSH and POP operations in PTSEG. The other routine, 
GRA PLOT ABSOLUTE, &BBEA, draws a line from the current position 
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to the new one supplied in DE and HL (X and Y). The registers affected are 
the same as for MOVE. I will list some other useful graphics ROM routines 
later in the chapter. 
The rest of the main body of the loop concerns itself with the drawing of the 
other three segments; finding the negative as well as the positive effects and 
repeating the process. Assembler lines 830-1100 look, and indeed are, 
somewhat convoluted in an attempt to keep as many as possible of the values 
needed close to hand, either in registers or on the stack. BC is used 
throughout to hold the Y axis offset; this is the value that we went to great 
pains to calculate. A holds the X axis offset, which is also the loop counter. 
If you draw connecting lines between each pair of associated PUSH and 
POPs, it should help you to understand the stack operations. The routine 
manages to hang on to the Y origin, and only fetches the X origin value once 
from the data area. Also note the way that the IX pointer is changed for 
processing each segment so that PTSEG operates on each quadrant in turn; 
by line 1120, IX is pointing to the same place as at the beginning of the 
drawing operation. 
Line 1110 tests for the end of the routine. If the X offset just plotted, as held 
in the A register, has reached zero, then we have completed the circle. You 
may wonder why the decrement operation is at the beginning of the loop but 
the test at the end. This allows the value of zero to be processed — we cannot 
quickly test for a value being decremented past zero because DEC A has no 
effect on the carry flag. This problem could be solved by using SUB 1, but the 
loop counter (which begins as the radius) needs to be decremented before the 
first pass of the loop, so putting DEC at the beginning saves an operation. 
When the final pass of the loop has been completed, we can return to BASIC; 
the circle has been drawn. There is one thing remaining to do, however; we 
have pushed nine two-byte values onto the stack, and they must be removed 
before a RET will fetch the correct address. We could use nine POPs, or even 
a DJ N Z loop, to save program space, but the neatest solution is to calculate 
where the return address is (LD DE,20: ADD IX,DE) and then reload the 
stack pointer (LD SP,IX). 

Estimating square roots 
I have left the explanation of the square root calculation until this point 
because it is easier to view in isolation, and as a method may well be of use to 
you in other applications. Let's go through the principle. We want to find the 
square root of a 16-bit number (0-65536, square roots 0-255), and we begin by 
guessing it to be 128: this is halfway through the possible answers. The square 
of 128 is 16384, &4000, which we compare with our target value: if the guess is 
lower than the target we add half of the original guess (128+64), if higher we 
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subtract (128-64). We now have a guess of either 192 or 64: we square the 
appropriate one of these, compare the answer with the target and either add 
or subtract 32. This process continues, with us repeatedly adding or 
subtracting descending powers of two; each stage will bring our guess nearer 
to the right answer. 

Binary searching 
Now consider the values we are using. We begin with 128; the remaining 
powers we use are 64, 32, 16, 8, 4, 2 and 1: add these together and the result is 
255. Try to reach any number in the range 0-255 by addition and subtraction 
of the powers and you will find you always get within one of your target: seven 
operations are the maximum required. We only have an accuracy of 1 in 255, 
but we can find the approximate square root by this method. You could 
improve the accuracy by dealing in more places, but for our purposes the 
errors are acceptable. 
The principle of using powers of two to search for the square root of a number 
is very powerful. It is known as binary searching; you are likely to encounter it 
in sophisticated BASIC programs: there is also a sorting technique, the 
Shell-Metzner sort, which uses it. The crucial point to understand is that by 
addition and subtraction of descending powers of two we can always get 
within one place of any value, given that our first guess is a high enough 
power. 

SQRLP — machine code to find a square root 
Now let's return to our program. Remember that we want to find the square 
root of a 16-bit number. The method is helped by the ease with which we can 
divide a number by two in machine code, just by shifting its bits one place to 
the right. Lines 540-560 quicken the process by setting up the registers for the 
first guess; we will always start with 128, the power of which is 16384. Having 
loaded A with the guessed root, DE with its square (&4000) and C with 64 
(half of the first guess), we jump into the middle of SQRLP (SQuare Root 
LooP). 
The first comparison sets the carry flag according to whether an addition or 
subtraction of C is required to bring the guess closer to the answer. Notice 
that line 650 avoids the need for two jumps by always subtracting C; so if an 
addition was required then C must previously have been added not once but 
twice to cancel the subtraction. If you count bytes and machine cyles you will 
see that this is a little more efficient, if slightly puzzling. 
The value in C is used to determine the end of the loop. Once it has been 
divided by two (SRL C — 128 becomes 64, etc.), it is tested; if it has become 
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zero then the loop has finished, otherwise we jump back to SQRLP. The 
square of the new guess is found by a call to SQOFA: the target is transferred 
from its storage register, IY, into HL, and a comparison performed by 
subtraction. The new power of two held by C is added or subtracted as 
necessary, C divided by two, and the check for another pass made. 
At the end of the loop, BC is loaded with A, and we have a sufficiently 
accurate square root for our purposes. It is possible to improve the accuracy 
of the approximation: we could jump out of the loop if the comparison 
resulted in zero. However, this would mean that only some roots would be 
found accurately; the remaining errors would result in a ragged circle. 
Another possibility would be to use the remainder of the last comparison to 
estimate whether to round the result up or down. The number of program 
bytes that this adds does not, in my opinion, justify the slight improvement to 
the resulting circle. 
One final point worth mentioning about Circle is that the result may appear 
slightly oval; how much it does so will depend on your own particular 
monitor. The reason for this is that screen pixels are a little larger along the Y 
axis, while the mathematics of the routine assume them to be as wide as they 
are high. You could add an adjusting factor to the routine, but remember that 
what appears perfectly circular on your monitor may not look the same on 
someone else's. 

Graphics firmware routines 
The Circle routine makes use of the firmware ROM routines. There are a 
number of other calls that affect the graphics screen, many of which you can 
utilise. The first time requires the X and Y co-ordinates to be passed in DE 
and HL respectively. They corrupt AF, BC, DE and HL. 

GRA MOVE RELATIVE — &BBC3: a relative version of MOVE 
ABSOLUTE. 
GRA SET ORIGIN — &BBC9: sets a new user origin. 
GRA PLOT ABSOLUTE — &BBEA: plots an absolute point. 
GRA PLOT RELATIVE — &BBED: a relative plot. 
GRA LINE RELATIVE — &BBF9: a relative version of LINE 
ABSOLUTE. 

The next two routines also corrupt the same registers: 
GRA CLEAR WINDOW — &BBDB: a CLS of the window display. 
GRA INITIALISE — &BBBA: resets all the graphics parameters. 

The answers from the next two are returned as X and Y in DE and HL. ASK 
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CURSOR also corrupts AF: 
GRA ASK CURSOR — &BBC6: gets the cursor position. 
GRA GET ORIGIN — &BBCC: gets the origin position. 

For the next two DE and HL need to contain the X and Y positions or offsets. 
The result is returned in A; flags, BC, DE and HL are corrupted. 
GRA TEST ABSOLUTE — &BBFO: gets the colour of a point. 
GRA TEST RELATIVE — &BBF3: relative version of TEST ABSOLUTE. 

Both of these require two user co-ordinates, one for each edge to be passed in 
DE and HL; they corrupt AF, BC, DE and HL. 
GRA WIN WIDTH — &BBCF: sets new X axis graphics limits. 
GRA WIN HEIGHT — &BBD2: sets new Y axis graphics limits. 

In these routines, on return, DE contains the co-ordinates of the left or top 
edge, HL the right or bottom. AF is corrupted. 
GRA GET W WIDTH — &BBD5: gets the X axis limits. 
GRA GET W HEIGHT — &BBD8: gets the Y axis limits. 

These require A to contain the new colour. Corrupt AF: 
GRA SET PEN — &BBDE: sets the graphics pen colour. 
GRA SET PAPER — &BBE4: sets the graphics paper colour. 

And, finally, these routines have no special requirements: 
GRA GET PEN — &BBE1: fetches the current pen colour to A. 
GRA GET PAPER — &BBE7: fetches the current paper colour to A. 

All the above routines are very robust: they work in whatever screen mode is 
currently selected and don't mind being sent co-ordinates that are outside the 
current graphics window. Note that relative co-ordinates may need to be 
negative; the signed number convention is therefore used, so &FFFF is —1, 
for example. 
Using these routines allows you to perform any of the graphics functions 
possible from BASIC, except from within your own machine code routines. 
Shapes of any description can be constructed to suit your particular purpose. 
For example, drawing squares or triangles would be quite simple to program, 
as long as you sent the right parameters to your routine. 
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CHAPTER 8 

A Fill Routine 

Locomotive BASIC on the 464 does not have a command which will colour in a 
shape on the screen, other than a rectangular window area. Fill is a machine code 
routine that will do so, and faster, incidentally, than the Fill command on the 664. 
When you come to study the method used by the routine, you will see that it does 
have some limitations — filling irregular shapes will require a careful choice of 
start point, and on occasions more than one Fill may be required. These 
limitations are compensated for by the speed at which the routine works. It is 
possible to write a shorter routine that has the same effect as Fill, using ROM 
routines to examine the screen one pixel at a time — Fill operates on bytes, only 
resorting to pixel filling when nearing the boundaries of the shape it aims to 
colour in. To load the routine, enter the code loading routine from Chapter 4 
(from tape or disk if possible) and add the program listing 8.1 to it. Save the 
demo program on tape (we will need it later) and then run it. As long as no data 
statement errors need correction, the screen will display a diamond shape and 
you will be asked for a colour in the range 1 to 25. Try 1 to begin with, and you 
will see the shape quickly filled. Careful examination will reveal that the lower 
half is filled first, then the upper half. 

Program 8.1 

100 REM  
101 REM ** 
102 REM 
110 MEMORY &A57F:GOSUB 8000 
120 MODE 1:WINDOW £1,1,40,1,1 
130 WHILE 1 
140 CLS:PLOT 469,199,1 
150 DRAW 319,349:DRAW 169,199 
160 DRAW 319,49:DRAW 469,199 
170 INPUT 111,"Fill colour (1-25)";F7o 
180 IF F7o<1 OR F70>25 THEN 160 
190 INK 2,F% 
20C CALL &A470,319,199,2 
210 IF INKEY$="" THEN 210 

105 

A 

Fill Demo 



MASTER MACHINE CODE ON YOUR AMSTRAD CPC 464 AND 664  

220 WEND 
230 END 
8000 REM AAA ****'''************** 
8001 REM ** Code Loading Routine ** 
8002 REM **AAAAA*********************** 
8010 REM Use lines from Program 4.1 
9000 REM **AAAAk***AAAA 'rx-kAAAA** 'rAAA A  

9001 REM ** 	Fill Data 	** 
9002 REM ****************************** 
9010 DATA 272 
9020 DATA CD,CC,BB,44,4D,DD,6E,04,1076 
9030 DATA DD,66,05,19,EB,21,7F,02,750 
9040 DATA A7,ED,52,D8,DD,6E,02,DD,1256 
9050 DATA 66,03,09,44,4D,21,8F,01,436 
9060 DATA A7,ED,42,D8,D5,7B,CB,1A,1251 
9070 DATA 1F,CB,1A,1F,CB,1A,1F,DD,772 
9080 DATA 77,02,2F,C6,50,DD,77,01,787 
9090 DATA CD,11,BC,2F,D6,FC,D1,3D,1193 
9100 DATA 28,06,CB,2A,CB,1B,18,F7,792 
9110 DATA CB,28,CB,19,C5,60,69,CD,1074 
9120 DATA 1D,BC,DD,71,05,7E,CB,01,886 
9130 DATA 38,03,07,18,F9,CD,2F,BC,779 
9140 DATA CD,2C,BC,57,DD,71,03,CB,1064 
9150 DATA 09,DD,71,04,DD,7E,00,CD,899 
9160 DATA 2C,BC,5F,C1,3E,C7,91,41,991 
9170 DATA 4F,04,E5,E5,C5,CD,OC,A5,1120 
9180 DATA Cl,E1,20,05,CD,26,BC,10,902 
9190 DATA F2,E1,41,AF,B8,C8,CD,29,1337 
9200 DATA BC,E5,C5,CD,OC,A5,C1,E1,1414 
9210 DATA C0,10,F3,C9,DD,4E,05,CD,1161 
9220 DATA 6E,A5,CO,CB,09,38,05,CD,945 
9230 DATA 5C,A5,30,1B,DD,46,01,AF,799 
9240 DATA B8,28,14,E5,CD,20,BC,7E,1024 
9250 DATA BA,20,05,73,10,F6,18,06,630 
9260 DATA DD,4E,04,CD,5C,A5,E1,DD,1211 
9270 DATA 4E,05,CB,01,38,05,CD,65,654 
9280 DATA A5,30,17,DD,46,02,AF,B8,888 
9290 DATA C8,CD,23,BC,7E,BA,20,04,976 
9300 DATA 73,10,F6,C9,DD,4E,03,CD,1085 
9310 DATA 65,A5,AF,C9,CD,6E,A5,CO,1314 
9320 DATA CB,09,30,F8,C9,CD,6E,A5,1189 
9330 DATA CO,CB,01,30,F8,C9,7A,AE,1189 
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9340 DATA A1,C0,7B,A1,47,79,2F,A6,1042 
9350 DATA 80,77,AF,C9,00,00,00,00,623 

To show the routine's versatility, break in to the program with ESC and 
change the screen mode by altering line 120: now restart the program with 
GOTO 120 and you will see that Fill also works in mode 0 and mode 2. 

Using Fill 
To use the program from BASIC you need to send three parameters — the X 
and Y co-ordinates (user co-ordinates, taking the graphics origin into 
account) and an ink number. The pixel chosen by the co-ordinates dictates 
the starting point of the filling, and establishes which is the old ink that is to be 
overwritten by the new. The form of the CALL is shown in line 200 of the 
demo program: the parameters need to be in the order X, Y and ink. In the 
next chapter we will see how to implement Fill, as well as Circle, as extended 
BASIC commands. 
You may like to experiment with the routine by altering the shape drawn by 
BASIC in the demonstration program, or by changing the start point. You 
will soon discover the limitations that the routine acquires as the result of its 
speed. It can be successful for the sides of a shape, even if they are very 
irregular, but the top and bottom can pose problems. A careful choice of start 
point will sometimes help, otherwise further fills will be required. 
Before we tackle the method of the machine code routine and details of its 
coding, it will help if we define the different conventions used to describe 
screen position, and explore the manner in which the video RAM is used to 
store information. 

Screen co-ordinate systems 
Print co-ordinates: this is the most important screen co-ordinate system. You 
are likely to have used these in conjunction with the LOCATE command in 
order to move the print position. Character co-ordinates begin at 1,1 — the 
top left of the screen. Position 2,1 is one character space right, the actual 
distance depending on the screen mode and therefore the size of the 
characters. The Y character co-ordinate dictates which character line is 
printed to — LOCATE 1,25 would move the print position to the bottom of 
the screen. If a window has been defined, the print co-ordinates begin at the 
top left corner of the window. 
Print co-ordinates are not used by the Fill routine, but they do apply to the 
TXT ROM calls in precisely the same way as they are used by BASIC. 
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Standard graphics co-ordinates: if you have not moved the graphics origin 
position with the ORIGIN command, standard graphics co-ordinates and 
user graphics co-ordinates (as used by the BASIC graphics functions) are 
identical. The co-ordinates 0, 0 (X,Y) indicate the bottom left corner of the 
screen. The X co-ordinates run horizontally, with the furthest right position 
having the value 639. The vertical Y co-ordinates have a maximum value of 
399, indicating the top of the screen. 
Whatever the screen mode currently in operation, there are always 640 X axis 
positions. Only in mode 2, however, is there a separate pixel for each 
position. Mode 1 has 320 pixels per line, so PLOT 0,0 and PLOT 1,0 will 
produce a dot in the same position. In mode 0, a pixel occupies four 
co-ordinate positions — PLOT 0,0 and PLOT 3,0 therefore plot the same 
pixel. 
The Y axis contains 200 lines, irrespective of the screen mode, so Y positions 
0 and 1 both refer to the bottom line of the screen. 
User graphics co-ordinates: as stated above, these only differ from standard 
co-ordinates if the graphics origin has been moved. Wherever the origin is, it 
has the co-ordinates 0,0. It is possible to use negative values for user 
co-ordinates, as these may fall on the screen. For example PLOT —1,-1 will 
place a dot on the screen one pixel to the left and one line lower than the 
graphics origin. 
Relative graphics co-ordinates: the origin for relative co-ordinates is taken as 
the last position of the graphics cursor. In all other respects they are the same 
as user co-ordinates. 
Base, or physical, co-ordinates: these are only used by the firmware, and in 
particular the screen pack. They bear a close resemblance to the actual pixel 
locations on the screen. The origin, 0,0 is always the bottom left corner of the 
screen: there are 200 positions on the Y axis, so co-ordinates are in the range 
0 to 199. The number of positions on the X axis varies with the screen mode: 
mode 2 has 640 (0 to 639); mode 1 has 320 (0 to 319); and mode 0 only 160 (0 
to 159). To convert standard co-ordinates to base co-ordinates we can divide 
the Y value by two; the X value is valid for mode 2, and must be divided by 
two or four for modes 1 or 0 respectively. 

The screen memory layout 
The Amstrad uses 16K of RAM, addresses C000 to FFFF, to store the 
information which the video display chip translates into a signal to feed to the 
monitor or modulator in order to produce a display picture. Almost all of the 
16K bytes of RAM store data for the screen display. Let us choose a byte that 
holds the information for the top left corner of the screen and examine how 
that data is stored. When in mode 2, the byte holds eight pixels, one in each 
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bit. The most significant bit (MSB), bit 7, stores the furthest left pixel, that is, 
the pixel in the very corner of the screen. If the bit is set, that screen pixel is 
displayed as ink 1 (normally bright yellow, although it can be changed to any 
colour from the palette of 27). If the bit is zero, then it produces an ink 2 pixel 
(normally blue). 
The second-leftmost bit of the byte, bit 6, holds the data for the second pixel 
in the top line, (standard co-ordintes 1,399). Subsequent bits relate to the 
adjacent pixels, until we reach bit 0, which holds the data for standard 
co-ordinate 7,399. Note that each pixel can only be in of two conditions, 
which explains why in mode 2 only two colours can be displayed. 
The actual colours displayed for the inks are determined by information 
previously sent to the video chip, which has palette registers in which to hold 
the information. Changing ink colours is completely unconnected with 
altering the bytes of screen RAM — it can be performed by a firmware screen 
routine. Mode 1 stores only four pixels in a byte. Bits 7 and 3 hold the data for 
the leftmost pixel, bits 6 and 2 hold the second pixel, 5 and 1 the third, and 4 
and 0 the rightmost. With two bits available for each pixel, four values can be 
stored, allowing four inks to be represented. Using the leftmost pixel as an 
example, bits 3 and 7 are used to store the ink number. The low bit is taken as 
the most significant — in this case bit 3, so if the byte had a binary value of 
00001000, then the leftmost pixel would be displayed as ink 2 (10 binary); bit 
3 set (MSB of the ink number of the leftmost pixel and therefore 2) and bit 7 
clear. If bit 7 were also set (10001000), the resulting ink number would be 3 —
other possibilities are 00000000 (ink 0) and 10000000 (ink 1). In the examples 
given above, the other pixels all have an ink value of 0, but again in their case, 
the least significant bit of the byte is always the most significant bit of the ink 
number. The mode that offers the most inks also has the least number of 
pixels to a byte (and to a line): mode 0 stores only two pixels per byte. The 
leftmost pixel's ink number is held in bits 7, 5, 3 and 1; the right-hand pixel of 
the byte uses bits 6, 4, 2 and 0. As with mode 1, the least significant bit is the 
most significant in terms of the ink number. If the byte held the information 
10000010 binary, the left-hand pixel would be displayed as ink 9. 
This may seem a complex arrangement, but the system is designed for the 
video chip's convenience rather than the programmer's understanding. 
However, the pixel arrangement lends itself neatly to manipulation by the 
rotate instructions of the Z80. 

The arrangement of the screen memory map 
The top 16K of RAM locations hold the pixel information for the screen in an 
order that is not immediately easy to understand. To increase our problems 
further, the video display chip can vary the point at which it begins reading 
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the memory in order to give the effect of a scrolling operation. Before 
studying the effects of this hardware scroll, let us begin by looking at the 
memory map in its default state. 

The initial video RAM layout 
Location C000 is the initial base address of the screen area. The byte of data 
stored here will give the information for the top left-hand corner of the 
screen. The bytes C001 to C04F hold the pixel data for the remainder of the 
top line of the screen. There are always 80 (50 hex) bytes in a screen line, 
whatever mode is selected — changing screen mode does not alter the order 
in which the bytes are scanned. From the above discussion of pixel 
arrangement, you can see that 80 bytes will yield 640, 320 and 160 pixels in 
modes 2, 1 and 0 respectively. 
Bytes following to the first line do not hold the information for the next line 
down — bytes C050 to CO9F hold the data for the ninth screen line, COAO to 
COEF the data for line 17 and so on. Line 192's data comes from addresses 
C780 to C7CF; bytes C7D0 to C7FF are unused, providing no data for the 
screen. The addresses I have just described — C000 to C7FF — form the first 
2K block of screen RAM, holding data for the first, ninth and every eighth 
subsequent line to the bottom of the screen. 
The whole of the screen RAM is divided into 2K blocks — while the first 
block begins with the top line, block 2, addresses C800 to CFDO, begins at the 
second line. There are eight blocks in all, with the last, F800 to FFFF, 
beginning at the eighth line and ending with the bottom line of the screen, line 
200. These blocks always refer to the same group of lines. 
We can look at the arrangement by using a single line of BASIC. Enter the 
following: 

MODE 2: FOR X= &C000 TO &FFFF: POKE X AFF: NEXT X. 

The screen RAM locations are filled with ink 1 pixels in the order of their 
addresses. Notice the 'venetian blind' effect as the first, then subsequent, 2K 
blocks of memory are poked. 
The mathematical relationship between pixels on the screen is complex, but 
can lend itself to quick calculations. If we have the address of a byte 
somewhere in the middle of the screen, the block of pixels to its right will be 
one address higher, that to its left one address lower. 
In most cases, the screen location above will be stored at an address 2K lower, 
and that below, 2K higher. On the occasions when adding or subtracting 2K 
would result in an answer outside the 16K block of screen RAM, the new 
address can be made valid by setting its two MSBs to one (bringing it into the 
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range C000-FFFF, thereby restoring the base address), and adding or 
subtracting a further 80 (50 hex) to move the address one line within the 
block. 
Extra precautions are needed at the edges of the screen, but the above 
method is quite practical in machine code. Unfortunately, although the 
relationship between screen addresses and pixel locations remains constant, 
the hardware scroll feature of the video chip is achieved by adding offsets to 
the starting addresses — this makes calculation cumbersome. 

Changing the base and offset of screen RAM 
The base address given above need not be set to C000 — it can be pointed to 
the beginning of any 16K block of memory. On the Amstrad it is possible to 
use the block 4000 to 7FFF, although not with a BASIC program. The other 
two areas contain important operating system software and would be 
extremely difficult to use. 
Although invariably we will find the base address set to C000, it is quite 
possible that an offset will have been defined which causes the first pixels to 
come from further along each block. The smallest offset allowed is 2, causing 
the screen to twitch to the left. An offset of 80 (50 hex) will cause the screen 
to scroll up by eight pixel lines, and so this is a very quick way of scrolling the 
screen by one line of characters. Changing the offset will bring the unused 
bytes at the end of each block into play. 
A large offset may mean that we reach the end of a 2K block before we have 
obtained the required number of bytes. In this case we go back to the 
beginning of the same block rather than going on to the next. This creates a 
wrap around effect, causing the first and last bytes of a block to occupy 
adjacent positions on the screen. 
If you are working from machine code, and can therefore guarantee that no 
offsets will be used, screen address calculations are fairly simple. If you wish 
to interface a routine with BASIC, you must take a potential offset into 
account. Doing so is perfectly possible; but unless you are trying to achieve 
very fast graphic movement, there is no point in re-inventing the wheel — you 
may as well use the available ROM routines. 

Masking — how we isolate individual pixels 
The manner in which pixels can be tested and altered without affecting the 
rest of the byte in which they are stored relies on the use of binary logic 
operations. 
Assuming we are in screen mode 2, the third pixel of a byte is stored in bit 5. 
How could we isolate the third pixel from all the other data in the byte in 
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order to test it? Consider what happens if you AND two binary numbers 
together 

10101101 
AND 00100000 
Result = 00100000 
If the top number is the screen byte, the effect of the AND operation is to 
clear all the bits except the one set in the second value — this is called a 
MASK. 
What if the screen byte had been 11011111? Performing an AND between 
this and the mask 00100000 results in 00000000; so you can see that the mask 
00100000 is capable of zeroing all the bits other than bit 5, which retains its 
original value. If we had used a mask of 00001000, bit 3 would have been 
isolated, and 10001000 would leave bits 7 and 3 unchanged but clear the rest. 
It follows that, given the correct mask, we can operate on any pixel by using 
logic. 
The use of masks gives us another bonus: we do not need to keep track of 
where we are in a byte. Rotating the mask left gives us the mask for the next 
pixel to the left (RLC 00100000 gives 01000000). In addition, if we try to RLC 
the bit pattern 10000000, the carry flag will be set, indicating that we have 
reached the last pixel in the byte. 
Masking works just as well in the other screen modes. The mask for pixel 3 in 
mode 1 is 00100010 — remember there are only four pixels in a byte in this 
mode — so we need only rotate this twice to the right or once to the left 
before the carry indicates we have overflowed the end of the byte. A mode 0 
mask for pixel 2 would be 01010101, which can only be rotated left once 
(creating a mask for pixel 1) without causing the carry to be set. 
The masking principle is put to good effect by the fill subroutines TSTPX, 
FLBYR and FLBYL. They work independently of the screen mode and act 
quickly into the bargain. A study of these routines will give you a good insight 
into how effects such as smooth pixel movement (rotating a byte and passing 
the carry over to the next byte) and contrasting cursor printing can be 
achieved. 

The principles behind Fill 
Let us look at the process that the Fill routine follows. The user co-ordinates 
given are translated into standard and also base co-ordinates, the distances to 
the sides of the screen calculated, and the address and mask of the first pixel 
ascertained with the aid of a ROM call. The current ink colour of the chosen 
pixel is encoded to cover a whole byte, the new ink also encoded into a byte, 
and masks for the left and right hand pixels created. 
The first line is filled by a subroutine (described, in a moment). The screen 
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address is then stepped down a line, and, if this position is still on the screen, 
the subroutine to fill the line is called again. This process is repeated until 
either the bottom of the screen is reached or the line filling subroutine returns 
with the zero flag clear, indicating that the first pixel it tested was not in the 
old ink. In other words a boundary has been reached. 
The original screen address is retrieved. If there are no screen lines above it 
then we return to BASIC, otherwise the address is pointed one line up the 
screen, the line filling subroutine called, and this process repeated until the 
top is reached or a boundary detected. 
The routine has now finished. The reason for the top and bottom edges not 
always being successfully filled is shown up by the above description. Because 
it is the pixels immediately above and below the starting point that are tested 
for an old ink value, the routine ceases to fill once a boundary has been 
detected on that vertical line. 

The line fill subroutine — LINFL 
The first step is to call a further subroutine — TSTPX. Using the mask and 
address sent to it, this tests the first pixel to the right; if it finds old ink at the 
specified pixel, it changes it to new ink and returns with the zero flag set, 
otherwise the zero flag is cleared. 
The line fill routine will study the flag returned to it. If Z is clear, indicating a 
boundary has been detected, LINFL will return to its calling routine taking 
the flag with it. If old ink was found, and it has therefore been changed to new 
ink, the mask is altered so as to isolate the next pixel right and FLBYR called. 
This fills the current screen byte to its right, with the state of the zero flag 
indicating a boundary — if one is met, LINFL moves on to filling to the left. 
Assuming that the first byte is filled to the right without meeting a boundary, 
the routine now moves on to byte-sized operations, moving the screen 
address to the right and comparing the byte there with a byte of old ink. If 
they match, the whole byte is simply replaced with new ink. This loop is 
continued until either the edge of the screen is reached, or a boundary is 
detected (i.e. the byte on the screen does not match the old ink byte). In this 
case, the lefthand mask is fetched and a further call to FLBYR reverts to pixel 
filling from the left edge of the last byte to the righthand boundary. 

The Fill listing 
The Fill routine is shown in source code listing 8.1. Note that the three 
parameters that are expected from BASIC are as follows: (IX +0), the new 
ink number; (IX +2) and (IX+3), the Y user co-ordinate; (IX+ 4) and 
(IX+5), the X user co-ordinate. The remark statements with the listing 
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Source code listing 8.1 

100 ;FILL: Recolours an area of screen up to pixel boundaries. 
110 ;Requires first pixel (user co-ords) and new ink to be 
120 ;passed 1:1)T BASIC 
130 ;Corrupts AF,. BC, DE, HL. 

A470 CDCCBB 140 FILL CALL BBCC ;Get user origin into DE and HL. 
A473 44 150 LD B,H ;Transfer Y user origin to BC. 
A474 4D 160 LD C,L 
A475 DD6E04 170 LD L,(IX+4) ;Get X co-ord into DL. 
A478 DD6605 180 LD H,(IX+5) 
A47B 19 190 ADD HL,DE ;Add origin. 
A47C EB 200 EX DE,F[L 
A47D 217F02 210 LD HL,639 ;Test if X position is off screen. 
A480 A7 220 AND A 
A481 ED52 230 SBC HL,DE 
A483 D8 240 RET C ;If it is, return. 
A484 DD6E02 250 LD L,(IX+2) ;Get Y co-ord into HL. 
A487 DD6603 260 LD H,(IX+3) 
A48A 09 270 ADD HL,BC ;Add origin. 
A48B 44 280 LD B H 
A48C 4D 290 LD C,L 
A48D 218F01 300 LD IIL,399 ;Test if Y position is off screen. 
A490 A7 310 AND A 
A491 ED42 320 SBC HL,BC 
A493 D8 330 RET C ;If it is, return. 
A494 D5 340 PUSH DE ;Save X position on stack. 
A495 7B 350 LD A,E ;Divide X position by 8, putting 
A496 CB1A 360 RE D ;the result into A. 
A498 1F 370 RRA 
A499 CB1A 380 RR D 
A498 1F 390 ERA 
A49C CB1A 400 RR D 
A49E IF 410 RRA 
A49F DD7702 420 LD (IX+2),A ;Save "bytes to left" value. 
A4A2 2F 430 CPL ; Calculate "bytes to right" value. 
A4A3 C650 440 ADD A,#50 
A4A5 D07701 450 LD (IX+1),A ;Save it. 
A4A8 CD11BC 460 CALL f/BC11 ;Get screen mode. 
A4AB 2F 470 CPL ; Transform it for use as counter. 
A4AC D6FC 480 SUB fiFC 
A4AE DI 490 POP DE ;Salvage X position. 
A4AF 3D 500 BASEL DEC A ;This loop converts the X position 
A480 2806 510 JR Z,GETBY ;to a physical co-ordinate. 
A4B2 CB2A 520 SRA D 
A4B4 CB1B 530 RR E 
A4B6 18F7 540 JR BASEL 
A4B8 CB28 550 GETBY SRA B ;Convert Y position to a physical 
A4BA CB19 560 RR C ;co-ordinate: 
A4BC CS 570 PUSH BC ;Save Y co-ordinate. 
A4BD 60 580 LD H,B 
A4BE 69 590 LD L,C 
A4BF CD1DBC 600 CALL fiBC1D ;Get screen address and mask. 
A4C2 DD7105 610 LD (IX+5),C ;Save mask. 
A4C5 7E 620 LD A,(HL) ;Fetch byte from screen. 
A4C6 CB01 630 ODILP RLC C ;This loop moves the desired ink 
A4C8 3803 640 JR C,CONV ;bits to the left of the byte. 

A4CA 07. 650 RLCA 
A4CB 18F9 660 JR ODILP 
A4CD CD2FBC 670 CONV CMIABC2F ;Convert ink information to cover 
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A4D0 CD2CBC 680 CALL/IBC2C 	;the whole byte. 
A4D3 57 690 LD 	D,A 	;Put "old ink" byte into D. 
A4D4 D07103 700 LD 	(IX+3),C 	;Save "far left" mask. 
A4D7 CB09 710 RRC 	C 	;Generate "far right" mask. 
A409 DD7104 720 LD 	(IX+4),C 	;Save it. 
A4DC DD7E00 730 LD 	A,(1)(4=0) 	;Get "new ink" number. 
A4DF CD2CBC 740 CALL#BC2C 	;Convert it to encoded ink byte. 
A4E2 5F 750 LD 	E,A 	;Put "new ink" byte into E. 
A4E3 Cl 760 POP 	BC 	;Retrieve Y physical co-ord. 
A4E4 3EC7 770 LD 	A,199 	;Put "lines up" value into C 
A4E6 91 780 SUB 	C 	;and "lines down" value into B. 
A4E7 41 790 LD 	B,C 
A4E8 4F 800 LD 	C,A 
A4E9 04 810 INC 	B 
A4EA E5 820 PUSH HI, 	;Save screen address. 
A4EB E5 830 DOFIL PUSH HL 
A4EC C5 840 PUSH BC 
A4ED CDOCA5 850 CALL LINFL 	;Fill the current screen line. 
A4F0 Cl 860 POP 	BC 
A4F1 El 870 POP 	11 
A4F2 2005 880 JR 	NZ,UP? 	;If no pixels were filled, jump. 
A4F4 CD26BC 890 GALLI BC26 	;Step screen address down a line. 
A4F7 10F2 900 DJNZ DWFIL 	;Repeat loop if not off screen. 
A4F9 El 910 UP? POP 	IlL 	;Salvage initial screen address. 
A4FA 41 920 LD 	B,C 	;"Lines up" value into B for use 
A4FB AF 930 XOR 	A 	;as counter: test for zero, and if 
A4FC B8 940 CP 	B 	;it is, return. 
A4FD C8 950 RET 	Z 
A4FE CD29BC 960 UPFIL CALLA 3029 	;Step screen address up a line. 
A501 E5 970 PUSH HL 
A502 C5 980 PUSH BC 
A503 CDOCAS 990 CALL LINFL 	;Fill current line. 
A506 Cl 1000 POP 	BC 
A507 El 1010 POP 	HL 
A508 CO 1020 RET 	NZ 	;If no pixels were filled, return. 
A509 10F3 1030 DJNZ UPFIL 	;Repeat loop if not off screen. 
A50B C9 1040 RET 	; 	Return to BASIC. 

1050 ;Subroutine to fill a screen line. 
A50C DD4E05 1060 LINFL LD 	C,(IX+5) 	;Get starting mask into C. 
ASOF CD6EA5 1070 CALL TSTPX 	;Test and possibly fill pixel. 
A512 CO 1080 RET 	NZ 	;If pixel was not old ink, return. 
A513 CB09 1090 RRC 	C 	;If this was the rightmost pixel, 
A515 3805 1100 JR 	C,LINRT 	;jump ahead. 
A517 CD5CA5 1110 CALL FLBYR 	;Fill the pixels to the right, and 
A51A 301B 1120 JR 	NC,LINLT+1 	;if we don't reach the last, jump. 
A51C DD4601 1130 Lima LD 	B,(IX+1) 	;Get "bytes right" value. 
A51F AF 1140 XOR 	A 	;If zero, jump ahead. 
A520 B8 1150 CP 	B 
A521 2814 1160 JR 	Z,LINLT+1 
A523 E5 1170 PUSH IIL 	;Save screen address. 
A524 CD2OBC 1180 RTLOP CALL #BC20 	;Step screen address a byte right. 

A527 7E 1190 LD 	A,(HL) 	;Compare the screen contents with a 
A528 BA 1200 CP 	D 	;byte of old ink, and if they don't 
A529 2005 1210 JR 	NZ,RTEND 	;match, jump out of the loop. 
A52B 73 1220 LD 	(IIL),E 	;Place new ink byte on screen. 
A52C 10F6 1230 DJNZ RTLOP 	;If not off screen, repeat loop. 
A52E 1806 1240 JR 	LINLT 	;Off the screen - jump ahead. 
A530 OD4E04 1250 RTEND LD 	C,(IX+4) 	;Get leftnost mask. 
A533 CD5CA5 1260 CALL FLBYR 	;Fill screen byte. 
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A536 El 1270 LINLT POP 	RI, 	;Restore screen address. 
A537 DD4E05 1280 LD 	C,(IX+5) 	;Get original mask. 
A53A CB01 1290 RLC 	C 	;Move mask one pixel left. 
A53C 3805 1300 JR 	C,LTDN? 	;If end of byte, jump. 
A53E CD65A5 1310 CALL FLBYL 	;Fill byte leftwards. 
A541 3017 1320 JR 	NC-,DONE 	;If not all filled, jump. 
A543 DD4602 1330 LTDN? LD 	B,(IX+2) 	;Get "bytes left" as counter. 
A546 AF 1340 XOR 	A 	;If it is zero, return. 
A547 B8 1350 CP 	B 
A548 C8 1360 RET 	Z 
A549 CD23BC 1370 LTLOP CALL #BC23 	;Step screen address left. 
A54C 7E 1380 LD 	A,(IIL) 	;Compare screen byte with old 
A54D BA 1390 CP 	D 	;ink byte, and if they don't 
A54E 2004 1400 JR 	NZ,ENDLT 	;match, jump out of loop. 
A550 73 1410 LD 	(HL),E 	;Put new ink on screen. 
A551 10F6 1420 DJNZ LTLOP 	;If not off screen, repeat loop. 
A553 C9 1430 RET 	; 	Off screen - return. 
A554 DD4E03 1440 ENDLT LD 	C,(IX+3) 	;Get rightmost mask. 
A557 CD65A5 1450 CALL FLBYL 	;Fill byte leftwards. 
A55A AF 1460 DONE XOR 	A 	;Clear zero flag. 
A55B C9 1470 RET 	; 	Return to calling routine. 

1480 ;Subroutine to fill a byte from mask to right. 
A55C CD6EA5 1490 FLBYR CALL TSTPX 	;Test and possibly set pixel. 
A55F CO 1500 RET 	NZ 	;If it was not old ink, return. 
A560 C809 1510 RRC 	C 	;Rotate mask right. 
A562 30F8 1520 JR 	NC,FLBYR 	;Repeat loop if not last pixel. 
A564 C9 1530 RET 

1540 ;Subroutine to fill a byte from mask to left. 
A565 CD6EA5 1550 FLBYL 	CALL TSTPX 	;A leftward version of FLBYR. 
A568 CO 1560 RET 	NZ 
A569 CB01 1570 RLC 	C 
A56B 30F8 1580 JR 	NC,FLBYL 
A56D C9 1590 	RET 

1600 ;Test pixel at (HL), mask c. If it is old ink, change 
1610 ;it to new ink. Zero flag cleared if no match. 

A56E 7A 1620 TSTPX LD 	A,D 	;Compare pixel with old ink. 
A56F AE 1630 XOR 	(HL) 
A570 Al 1640 AND 	C 
A571 CO 1650 RET 	NZ 	;Return if no match. 
A572 78 1660 LD 	A,E 	;Mask off current pixel of new ink. 
A573 Al 1670 AND 	C 
A574 47 1680 LD 	B,A 	;Save in B. 
A575 79 1690 LD 	A,C 	;Clear current pixel to O. 
A576 2F 1700 CPL 
A577 A6 1710 AND 	(HL) 
A578 80 1720 ADD 	A,B 	;Add new ink pixel. 
A579 77 1730 LD 	(HL),A 	;Put new byte on screen. 
A57A AF 1740 XOR 	A 	;Clear zero flag. 
A57B C9 1750 RET 	; 	Return to calling routine. 

should help you relate the above description of the principle to the 
component parts of the code. The following sections are of particular interest: 
Lines 210-240, 300-330: having calculated the standard co-ordinates, these 
lines check that the specified point is actually on the screen. If it is not, the 
routine returns to BASIC having done nothing. 
Lines 340-410 divide the X co-ordinate by eight using binary shifting. This 
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tells the routine how many bytes there are to the left edge of the screen. 
Lines 430-440 are a quick way of subtracting the number of bytes to the left 
from 4F hex, in order to calculate how many bytes there are to the right edge. 
Lines 460-540 fetch the screen mode and use it to calculate the X base 
co-ordinate, while lines 550-560 divide the Y co-ordinate by 2 so it too 
becomes a base co-ordinate. 
Line 600 calls a very useful ROM routine which converts the base 
co-ordinates to a screen address and mask. The ROM routines used by Fill, 
along with others of interest, will be detailed at the end of this chapter. 
Lines 770-810 calculate loop counters from the Y co-ordinate so that reaching 
the bottom and the top of the screen can be detected. 
The main section of Fill is contained in lines 820-1040, consisting of two loops, 
one for the downward and the other for the upward fill. 
LINFL, the line filling subroutine described above is contained in lines 
1060-1470. Note that the counters used for checking for the edges of the 
screen are fetched from indexed memory locations, and care is taken to 
prevent a count of zero, which would cause the loops to be performed 255 
times. D and E are used throughout LINFL and its subroutines to hold the 
old and new ink bytes. 
FLBYR and FLBYL (lines 1490-1590) demonstrate the neatness of using 
circular rotate instructions to alter a mask. There are two possible exits from 
these routines: where the last pixel in the byte has been treated, or a pixel that 
is not in old ink is encountered. The state of the flags differs for each exit so 
that the calling routine can determine what has happened. 
The last subroutine, TSTPX (lines 1620-1750), uses both the mask and a 
complement of it in order to deal with only the desired pixel. Note the neat 
use of XOR in line 1630 to check for a difference in the bit patterns — the 
other XOR in line 1740 is simply used to clear the zero flag which indicates 
that the specified pixel did consist of old ink. 

Screen pack firmware routines 
Now that the screen layout has been discussed, we can extend the list of 
screen routines begun in Chapter 3. 
BC05 SET OFFSET: alters the offset used by the video chip for the start of 
each block of memory. HL is sent holding the required offset, and is masked 
with 7FE to make it legal. 
BC08 SET BASE: changes the block of memory used as video RAM. A must 
pass the high byte of the new block's address, and it is masked with CO to 
ensure the RAM begins at a 16K boundary. Both the above routines corrupt 
AF and HL. 
BCOB GET LOCATION: returns the high byte of the base address in A and 

117 



MASTER MACHINE CODE ON YOUR AMSTRAD CPC 464 AND 664  

the offset in HL. 
BCOE SET MODE: changes the screen mode to that sent it in the A register. 
Corrupts AF, BC, DE, HL. 
BC11 GET MODE: returns the- current mode number in A. 
BC14 CLEAR: sets the whole of the screen to ink 0. Corrupts AF, BC, DE, 
HL. 
BC1D DOT POSITION: When sent the X and Y base co-ordinates in DE 
and HL respectively, returns the screen address in HL and mask for that pixel 
in C. B also returns one less than the number of pixels in a byte. Corrupts AF, 
DE. 
BC20 NEXT BYTE: moves a screen address one byte right. 
BC23 PREV BYTE: moves a screen address one byte left. 
BC26 NEXT LINE: moves a screen address one line down. 
BC29 PREV LINE: moves a screen address one line up. 
All the above receive and send the address in HL. They do not indicate if you 
have moved off the screen, which would mean that the returned address 
would be meaningless. They all corrupt AF. 
BC2C INK ENCODE: converts the ink number in A to a whole byte of that 
ink's bit pattern. 
BC2F INK DECODE: takes the leftmost pixel from the byte passed in A and 
converts it to an ink number. 
BC32 SET INK: changes the colour or flashing colours in which an ink is 
displayed. A should contain the ink number, B the first and C the second 
colour. Sending B and C at the same value creates a steady colour. Corrupts 
AF, BC, DE, HL. 
BC35 GET INK: if you send an ink number in A, this routine will return the 
colours of the ink currently being displayed by the video chip via B and C. 
Corrupts AF, DE, HL. 
BC38 SET BORDER: sets the border colour to the values sent in B and C. 
Corrupts AF, BC, DE, HL. 
BC3B GET BORDER: returns the border colour in B and C. Corrupts AF, 
DE, HL. 
BC3E SET FLASHING: sets the time, in TV fields (50th or 60th of a second, 
depending on country), for which each colour of a flashing pair is displayed. 
The values are sent in H and L, affecting the first and second colours 
respectively. Zero is taken to mean 256. Corrupts AF, HL. 
The above routines, plus those listed in Chapter 3, give you control over the 
screen without requiring you to dabble directly with the hardware. 
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CHAPTER 9 

Extending BASIC 

The Amstrad CPC computers are equipped with a form of BASIC that is fast 
and has many excellent features. Although it may be criticised for lacking 
some commands, it does have one facility that allows virtually any command 
to be included in its BASIC, and then for it to be used with almost the same 
ease as if it were an original part of the language. We will employ this feature, 
called resident system extensions (RSX), so as to implement the Circle and 
Fill routines as BASIC commands. We will also create a further keyword, 
CIRCFL, which will produce a filled circle as long as its centre is within the 
screen area. 
Once an RSX has been loaded an dinitialised, the use of the extra commands 
is indicated by bar symbol. (, on the @ key) as a prefix. For example, our 
circle command will be invoked by using the command 1CIRCLE,X,Y,R —
whether directly from the keyboard or as part of a program. The parameters 
are the same as for the direct machine code CALL (the co-ordinates of the 
centre and the radius). The fill command will take the form FILL,X,Y,I (I 
being the ink colour), while the combined command will have the syntax 
1CIRCFL.X,Y,R,I. Note that a comma is required after the name and before 
the first parameter. As with other BASIC words, the name need not be typed 
in upper case letters. 
It may seem that we are about to go to a great deal of troube to replace CALL 
with another word, but RSXs are very simple to install; and CALL is a 
dangerous command — the wrong address or an incorrect number of 
parameters can cause a crash, possibly destroying an unsaved program into 
the bargain. 
Having set up the new commands properly, mistyping the name will simply 
generate an UNKNOWN COMMAND error message. Giving the wrong 
number of parmeters will cause our own error routine to be invoked. The 
example shown here is only the tip of the iceberg; whole toolkits of extra 
commands could be written and incorporated into BASIC. 
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Setting up the RSX 
Program 9.1 gives the necessary data statements for adding our graphics 
routines to BASIC: it also includes a demonstration of the new CIRCFL 
command. Enter the listing, not forgetting to include the code loading routine 
from Chapter 4, and then add a temporary line — 115 STOP. Run the routine 
to check that the data statements are correct. Once they are, remove the 
temporary line and save the program. 

Program 9.1 
90 REM NOTE - Circle Demo and Fill Demo 
91 REM 	MUST be loaded and run 
92 REM 	before this program! 
100 REM ************AAAAAAAA************ 
101 REM ** 	RSX Demo 	** 
102 REM 	********************** 	 
110 MEMORY &A467:GOSUB 8000 
120 CALL &A3F4 
130 CLS 
140 FOR M=2 TO 0 STEP -1 
145 MODE M:Y=0 
150 FOR X=225 TO 30 STEP -15 
160 Y=Y+1:PLOT -4,-4,Y 
170 	!CIRCFL,300,200,X,Y 
180 NEXT X 
190 NEXT M 
200 INPUT "Do you wish to save code (Y/N)";A$ 
210 IF A$="Y" OR A$="y" THEN SAVE "RSX.BIN",B,S,A3F0,&280 
220 END 

9000 REM ****************************** 
9001 REM ** 	RSX Data 	** 
9002 Ram ***************A 	*********** 
9010 DATA 120 
9020 DATA 00,00,00,00,21,FO,A3,01,437 • 
9030 DATA FE,A3,CD,D1,BC,C9,09,A4,1393 
9040 DATA C3,1A,A4,C3,20,A4,C3,27,1010 
9050 DATA A4,46,49,4C,CC,43,49,52,809 
9060 DATA 43,4C,C5,43,49,52,43,46,699 
9070 DATA CC,00,FE,03,20,20,18,50,629 
9080.DATA FE,03,20,1A,C3,80,A5,FE,1057 
9090 DATA 04,20,13,DD,23,DD,23,DD,788 
9100 DATA E5,CD,80,A5,DD,E1,DD,6E,1504 
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9110 DATA FE,DD,75,00,18,32,21,54,783 
9120 DATA A4,7E,23,CD,5A,BB,FE,07,1068 
9130 DATA 20,F7,06,OA,2B,7C,B5,20,675 
9140 DATA FB,10,F9,C9,1E,50,61,72,1038 
9150 DATA 61,6D,65,74,65,72,20,65,771 
9160 DATA 72,72,6F,72,07,00,00,00,460 

We must now include the code from the two previous demo programs. This is 
done by loading the programs and allowing the code loading subroutine to do 
its work. Load Program 7.1 (Circle Demo) and run it. When you are asked 
for an origin, ESCape from the program. Then load and run Program 8.1 (Fill° 
Demo), breaking it when asked for a colour. 
Now we can reload the RSX DEMO program, and this time we can run it 
properly. The CIRCFL demo will draw and fill a number of concentric circles 
in each of the screen modes, ending with a colourful display in mode'0. When 
the demonstration ends you will be asked if you wish to save the code — I 
suggest you do this a number of times, and also check your recording so that 
an error will not cause you to have to repeat the whole procedure. The code 
saved is all that is needed to implement the commands on subsequent 
occasions. 
Experiment with the new BASIC commands; see what happens when you try 
CIRCFL with co-ordinates outside the screen area. You could also try 
deliberately giving the wrong number of parameters to the commands — the 
error message does not completely halt a BASIC program, but you should not 
fail to notice it! 
The easiest way to incorporate an RSX into an empty computer is to create a 
bootstrap loading program. Program 9.2 is an example. If you-wish to add the 
extra commands for use in a larger program, alter the last line (140) to RUN 
"!TITLE" (where TITLE is the name under which the larger program is to be 
saved); save the bootstrap program first, then the code (SAVE 
"RSX",B,&A470,&280), and finally the main program. When you issue the 
comand RUN "BOOT", the three sections should load consecutively. 

Program 9.2 
100 REM *****kkk*kkkk*** ******** 
101 REM ** RSX Boot ** 
102 REM ******************************** 
110 MEMORY &A3EF 
120 LOAD "!RSX.BIN",8,A3F0 
130 CALL &A3F4 
140 NEW 
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RSX tables 
The firmware needs a number of conditions to be satisfied before an RSX will 
work. Firstly, there must be both a command table and a name table stored in 
memory. The first two locations of the command table must hold the address 
(LSB first) of the first byte of the name table. There must then follow a 
three-byte JP command that will cause a jump to the handling routine for 
each of the new commands. 
The name table must contain the names of the commands in the same order in 
which the JP instructions are stored in the command table. The names are 
stored as bytes of ASCII codes, with the last character of a name indicated by 
setting bit 7 high — the last L of FILL would be stored as CC rather than 4C 
hex. For BASIC to be able to recognise the names they must be in upper case 
and contain no unusual characters. The end of the name table is indicated by 
a NUL code, 00 hex or NOP. 
The kernel routines require four bytes of RAM for their own purposes, 
located somewhere between addresses 4000 to BFFF (i.e. not shadowed by 
ROM). This area can be set up in a small workspace at some convenient 
location, provided we know the address and there is no danger of the RAM 
being overwritten. Immediately above a lowered HIMEM is ideal. 
The final requirement is for us to "log on" the new RSX. A kernel routine, 
LOG EXT (BCD1), does this for us. It requires BC to hold the address of the 
command table, and HL the address of the workspace. The routine corrupts 
DE. On return, whenever BASIC makes use of another kernel routine, 
FIND COMMAND (BCD4), it will find our new commands. In the case of a 
RAM-based RSX, sending a pointer to the desired name in HL will return 
carry false if no command of that name was found, otherwise HL will contain 
the address of the relevant JP instruction. 

The RSX routine 
A study of source code listing 9.1 will show that our routine fulfills all the 
above requirements. The tables are detailed in line 170-270, the workspace is 
at line 1120, while the routine that sets up the registers and calls LOG EXT is 
located at lines 130-160. This is the only part of the routine that is actually run 
when we initialise the RSX; the rest serves to implement the commands. 

Source code listing 9.1 
100 ;RSX - sets up Circle, Fill and Circfl as BASIC commands. 
110 ;No parameters. Corrupts BC, 11L. 

A3F0 00000000 120 WKSP 	DEFB 0,0,0,0 	;4 bytes for kernel use. 
A3F4 21F0A3 130 RSX LD 	HL,WKSP ;Point HI. to workspace. 
A3F7 01FEA3 140 LD 	BC,COM T ;Point BC to command table. 
A3FA CDD1BC 150 CALL £BCD1 — ;Call KL LX EXT. 
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A3FD C9 160 RET 	; 	End of logging on routine. 
A3FE 09A4 170 COM T DER! NAME 	;Address of keyword table. _T 
A400 C31AA4 180 	— JP 	FLL — 	;Jumps to command handlers. 
A403 C320A4 190- JP 	CRC 
A406 C327A4 200 JP 	FCIR _ 
A409 46494C 210 NAME 	DEFM "FIL" 	;Extended BASIC command names. _T 
A40C CC 220 	DEFB "L"+1180 
A4OD 43495243 230 DEFM "CIRC" 
A411 4CC5 240 DEFB "L","E"+#80 
A413 43495243 250 DEEM "CIRC" 
A417 46CC 260 DEFB "F","L"+1180 
A419 00 270 DEFB 0 
A41A FE03 280 FLL CP 	3 	;If wrong number of parameters 
A41C 2020 290 JR 	NZ,IIRROR 	;jump to ERROR. 
A41E 1850 300 JR 	#A470 	;Jump to FILL routine. 
A420 FE03 310 CRC CP 	3 	;Parameter check. 
A422 201A 320 Ja NZ,UMR 
A424 C380A5 330 JP 	11 A580 	;Jump to CIRCLE routine. 
A427 FE04 340 FCIR CP 	4 	;Parameter check. 
A429 2013 350 JR 	12,1aR0I 
A42B DD23 360 INC 	IX 	;Point IX to "radius" parameter. 
A42D DD23 370 INC 	IX 
A42F DDES 380 PUSH IX 	;Save pointer to parameters. 
A431 CD80A5 390 CALL #A580 	;Call CIRCLE routine. 
A434 DDE1 400 POP 	IX 	;Restore parameter pointer. 
A436 DD6EFE 410 LD 	L,(IX-2) 	;parameter area. 
A439 DD7500 420 LD 	(IX+0),L 
A43C 1832 430 JR 	#A470 	;Jump to FILL routine. 
A43E 2154A4 440 ERROR LD 	HL,MSG 	;Point EL to error message. 
A441 7E 450 MSLP LD 	A,(HI.) 	;Get ASCII code from message. 
A442 23 460 INC 	HL 	;Point to next character. 
A443 CD5ABB 470 CALL #BB5A 	;Output the character. 
A446 FE07 480 CP 	7 	;If the character was not BELL 
A448 20F7 490 JR 	NZ,MSLP 	;jump back for next character. 
A44A 060A 500 LD 	B,10 	;Prepare for delay loop. 
A44C 2B 510 DYLP DEC 	111, ;Inner delay loop decrements 
A44D 7C 520 LD 	A,H 	OIL until it is zero. 
A44E B5 530 OR 	L 
A44F 20FB 540 JR 	NZ,DYLP 
A451 10F9 550 DJNZ DYLP 	;Outer loop repeats 10 times. 
A453 C9 560 RET 	;Return to BASIC. 
A454 lE 570 MSG DEFB 30 	;"Home cursor" code. 
A455 50617261 580 DEEM "Para" 	;Error message string. 
A459 6D657465 590 DEFM "mete" 
A45D 72206572 600 DEFM "r er" 
A461 726F72 610 DEFM "ror" 
A464 07 620 DEFB 7 	;BELL code. 

When BASIC calls an RSX, it sends, in the A register, the number of 
parameters it has placed in the IX memory area, and therefore the number of 
parameters declared to BASIC. The three handling routines begin by 
checking A: if there are not the correct number of parameters, a jump to the 
ERROR routine is made; otherwise the CRC and FLL handlers make 
straightforward jumps to the relevant Circle or Fill routines. 
FCIR adjusts the IX pointer and saves it before calling Circle; it then restores 
TX and loads the ink parameter into the correct location for the Fill routine 
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before jumping to it. Fortunately, Circle does not use the IX area for data 
storage, so the X and Y co-ordinates are left intact for use by Fill. 

Error handling 
The ERROR section demonstrates two classic machine code techniques: a 
string printing routine and a delay loop. When ERROR is jumped to, the 
bytes stored at location MSG are sent to the OUTPUT text routine — the first 
code sets the cursor to the top left of the window, the last causes a short beep 
to be generated. Note the use of HL as a pointer to the message. 
The test for the end of the string uses, in this case, the BELL code (ASCII 7) 
— however, a number of more general string terminators could be used. If 
you are unlikely to need the characters 128-255, then you can mark the end of 
a string by setting bit 7 of the last code; witness the RSX name table. Bit 7 
would need to be masked in order to print the last character properly — AND 
7F would do the trick. Other possibilities for terminating the string are the 
NUL code (00 — easily tested for with AND A) or CR (ASCII 13). 
The delay consist of an outer loop which repeats 10 hex times: if the length of 
the delay is not convenient, alter the LD B,10 instruction. The inner loop 
repeatedly decrements HL until it reaches zero: take note of the OR 
instruction which is used to test for zero, as decrementing a register pair does 
not alter the flags. Notice that HL is not set to any starting value, although, 
after the first pass of the inner loop, it is set to zero so that all further passes 
will take the longest time possible. 

General purpose subroutines 
The RSX routine is a good example of how machine code can be exploited to 
produce programs, as distinct from the routines that we have been writing in 
this book. It does not perform any major tasks in its own right, but calls other 
routines to do the work. Some decision-making is involved, and a little 
parameter manipulation, but any hard work is left to subroutines which can 
be developed and debugged in isolation from the main program. 
The use of subroutines is an important part of machine code writing. Any 
large program which requires message printing and delay loops would do well 
to include refined versions of those parts of the error routine. In a moment we 
will transform them into more general purpose routines which can be 
included in any major program. But first we must consider what requirements 
are desirable for general purpose subroutines. 
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Predictability 
Most importantly, they should always do precisely what is expected of them. 
If they cannot perform the task desired, then they should return some value 
to the calling program which indicates that they have not succeeded. The 
TSTPX subroutine in the FILL command is a good example of this — flags 
are used to indicate whether the pixel tested was found not to be old ink and 
therefore it was not coloured in with new ink. 
As part of this same requirement, the routine should return predictable 
register values. Apart from returning the resultant values of calculations 
(witness the screen address ROM routines such as NEXT BYTE), it 
sometimes may be advantageous to return other information which may, or 
may not, be used by the calling program — we will use this technique in the 
message printing subroutine. 
If you do not require a register to return a useful value, then it is best to 
ensure that the original contents are restored. This is normally simple to 
achieve by using PUSH and POP instructions at the beginning and end of 
subroutines. The main disadvantage of this technique is that it stops you from 
using the conditional return instructions — you will need to restore the stack 
before you can return from the subroutine. 
If you do decide to allow a subroutine to corrupt a register (and there are 
many good reasons for doing so), make sure that you remember which 
registers are corrupted. Careful documentation will pay dividends here —
once you have written a subroutine you will find yourself calling it without 
much thought to its effects other than the desired one. I vividly remember 
how I learnt this lesson: having modified a program written some weeks 
before, I spent a whole day debugging it because sloppy documentation 
prevented me from appreciating that a particular register had been corrupted. 

Flexibility 
When you first decide the need for a subroutine, you will probably have a 
clear view of what is required from it. If you then go on to write a subroutine 
that meets your specification, it will serve the immediate purpose but there is 
every possibility that its role could be extended in order also to fulfill other 
requirements. It is very shortsighted to write a delay routine which produces a 
fixed delay of five seconds when, with a little extra code, the enhanced version 
could produce delays varying from milliseconds to minutes. 
When written, an examination of the code may reveal that a few more 
instructions could add extra features. Although these may not have any 
immediate function, they could be found advantageous at a later stage in the 
programming. 
Building up a library of useful subroutines will save you much time when 
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tackling large machine code programs. Some of them you may write yourself: 
others can be gleaned from books and magazine articles. A careful study of 
your machine's ROM can provide some beneficial material. Another 
potential source is other programmer's work if, for example, you belong to a 
computer club, but without proper documentation you will probably find it 
quicker to start from scratch anyway. Once a useful library has been 
collected, parts of it can be loaded before you even begin programming, 
giving you the essence of your own operating system. 

Delay 
Source code listing 9.2 shows a simple, but effective delay subroutine. The 
two input parameters, B (about 0.5 second units) and HL (fine adjustment), 
give a range from a few milliseconds to over two minutes. The fineness of 
adjustment available means that you can accurately control the running speed 
of other routines, where, for example, I/O operations are involved. If the 
longest available delay is insufficient for you, then a Long Delay subroutine 
could be implemented using multiple calls to Delay. 

Source code listing 9.2 
100 ;DELAY - General purpose delay subroutine. 
110 ;Send B as the coarse value, HL as the fine value. 
120 ;Values of B=0, IlL=FFFF will give a delay of 
130 ;approximately half a second. 
140 ;Preserves all registers 

F5 150 DELAY PUSH AF 
C5 160 PUSH BC 
E5 170 PUSH HL 
04 180 INC B 
23 190 INC HL 
2B 200 DELLP DEC HL 
7C 210 LD A,H 
B5 220 OR L 
20FB 230 JR NZ, DELLP 
10F9 240 DJNZ DELI :P 
El 250 POP IlL 
Cl 260 POP BC 
Fl 270 POP AF 
C9 280 RET 

There are only two refinements added to Delay which distinguish it from the 
DYLP section of RSX. All the registers used are preserved on the stack, so 
Delay can be called with impunity. The values sent are incremented before 
use so that values of 0,0, rather than causing the longest delay, sensibly cause 
the shortest. 
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Although I have suggested a long version of Delay, a subroutine that I call 
Wait would be a more useful addition to your library. I will not give a listing of 
this, just a specification — I hope you will take up the challenge and write it 
yourself. You should make Wait capable of generating a delay of up to four 
minutes, but if a key is pressed during this time it should return: however this 
should not happen if a key is already pressed when the routine is first called. 
An indication should be given as to whether the delay was interrupted by a 
key-press or ran its full length. The most obvious use for Wait is the 
presentation of instruction pages on the,  screen, accompanied by the message, 
"Press any key to continue". The specification given makes Wait suitable for 
many applications. 

Strings 
Source code listing 9.3 contains the essence of the MSLP of RSX in lines 
290-400, but it has been expanded to include two Strings routines, INSTR and 
TBSTR: they differ in the manner in which the message string is passed. 
INSTR expects the message string to be imbedded in program memory 
immediately after the call; on return, the PC is suitably modified so that 
execution continues at the instruction after the message. TBSTR expects HL 
to be pointing to the desired message, allowing us to fetch the string from a 
table — a string used on more than one occasion need only be included in 
memory once, and we can also look up the address of a string from another 
table in order to vary a program's response to different situations. 

Source code listing 9.3 
100 ;Strings - two routines to print ASCII strings 
110 ;including control codes. Code 0 is used to mark 
120 ;the end of a string. Code 27 will take the 
130 ;next value as the number of times which to 
140 ;print the following string of characters. 
150 ;Both routines leave HL pointing to the byte 
160 ;after the end of the string, and preserve 
170 ;all other registers. 
180 ;INSTR assumes the string is imbedded in 
190 ;program memory immediately following the call. 
200 ;TBSTR expects HL to point to the first 
210 ;character to be printed. 

7200 	El 220 INSTR POP 	HL ;Get previous value of PC. 
7201 	CD0672 230 CALL TBSTR ;Print string. 
7204 	E5 240 PUSH HL ;Restore return address. 
7205 	C9 250 RET 	; Return to after string. 
7206 	F5 260 TBSTR PUSH AF ;Save registers. 
7207 	C5 270 PUSH BC 
7208 	D5 280 PUSH DE 
7209 	7E 290 SRLP LD 	A,(11) ;Get character code. 
720A 	23 300 INC 	HL ;Point to next character. 
720B 	A7 310 AND 	A ;Check for NUL. 
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720C 2004 320 JR 	NZ,REPT? ;If not NUL, jump ahead. 
720E DI 330 POP 	DE ;Restore original register values. 
720F Cl 340 POP 	BC 
7210 Fl 350 POP 	AF 
7211 C9 360 RET 
7212 FE1B 370 REPT? 	CP 	27 ;If the character is "repeat", 
7214 2805 380 JR 	Z,GETCT ;jump ahead. 
7216 CD5ABB 390 CALL #8135A ;Send the character to be printed. 
7219 18EE 400 JR 	SRLP ;jump back for another character. 
721B 46 410 GETCT 	LD 	B, (HL) ;Fetch the repeat value. 
721C 23 420 INC 	HL ;Point to next character. 
721D E5 430 RPLP 	PUSH HL ;save address of repeat string. 
721E CD0672 440 CALL TBSTR ;Recursive call. 
7221 EB 450 EX 	DE,HL ;Put end of string into DE. 
7222 El 460 POP 	HL ;Restore HL to start of string. 
7223 10F8 470 DJNZ RPLP ;If more repeats, jump back. 
7225 EB 480 EX 	DE,HL ;Point HL to next character. 
7226 18E1 490 JR 	SRLP ;Jump back for next character. 

500 ;Demonstration of INSTR 
7228 CD0072 510 CALL INSTR 
722B 1B1A 520 DEFB 27,26 ;Repeat 26 times. 
722D 54686520 530 MSG 	DEFM "The " ;Message string as ASCII. 
7231 636F6465 540 DEFM "code" 
7235 20323720 550 DEFM " 27 " 
7239 6160606F 560 DEFM "allo" 
723D 77732079 570 DEFM "ws y" 
7241 6F752074 580 DEFM "ou t" 
7245 6F207265 590 DEFM "o re" 
7249 70656174 600 DEFM "peat" 
724D 20737472 610 DEFM " str" 
7251 696E6773 620 DEFM "ings" 
7255 0000 630 DEFB 0,0 ;End repeat and end string: 
7257 C9 640 RET 

All registers except HL are preserved. On return from either routine, HL will 
be pointing to the byte after the string just printed. In the case of INSTR this 
will be the location of the next instruction, and therefore not of use, but after 
TBSTR it may well be pointing to the next string in the table. 
INSTR uses a simple trick to find the address of the string — it POPs the 
return address from the stack into HL. After calling TBSTR it then PUSHes 
the new value of HL onto the stack to be used as the return address. 
TBSTR has a bonus feature that I decided to include after a study of the 
character code table in the Amstrad user manual (Chapter 9). There are two 
codes available if we wish to use all the possible control codes — NUL which 
does nothing, and ESC, which the manual defines as 'no effect': but the 
firmware specification goes on to say that it is available to the user. NUL is 
the best choice as a string terminator — it is easy to test for. How could we 
exploit ESC? 
I decided to use ESC as a 'repeat the following string' code. When 
encountered, TBSTR jumps to line 410, GETCT (get count), and fetches the 
next value from the string. It then employs this as a counter to print the next 
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group of characters up to a NUL, as many times as the counter dictates. This 
is achieved by a recursive call — TSBSTR actually calls itself! Note how DE is 
used to store the address after the NUL code, so that when the repeat ceases, 
we can continue with the rest of the string. 
Recursion can be a very powerful tool. It is not normally possible in BASIC 
because the interpreter will muddle up the variables, using the same ones 
each time the routine is called. As long as care is taken, machine code can 
employ recursion to very good effect. 
Note that lines 500 onwards are provided for the demonstration of INSTR 
and the repeat facility. Program 9.3 is a BASIC demo program that will load 
the subroutines at a low point in memory; you must include the code loading 
routine from Chapter 4. Having entered, saved and run the program, it 
should print a message out a number of times. You can add further data 
statements to the program (suitably modifying line 9010). This causes the 
program to stop with a data error and you can then enter PRINT SUM to get 
the correct checksum for the end of each data statement. Using this method 
you will be able to explore the effects of the control codes and the repeat 
facility. With a little care you should be able to produce some quite stunning 
screen displays with just a handful of bytes. The control codes will allow 
almost anything — you can even draw complex pictures by redefining the 
character shapes with code 25. 

Program 9.3 
100 REM ******************** 	*kick 

101 REM ** 	INSTR Demo 	** 
102 REM AAAk********************AAAAAA** 
110 MEMORY &7257:GOSUB 8000 
120 CLS 
130 CALL &7228 
140 STOP 

9000 REM ******kA 	h******************* 
9001 REM ** 	INSTR Data 	** 
9002 REM *****AAAk A*k******k*****-k***** 

9010 DATA 88 
9020 DATA E1,CD,06,72,E5,C9,F5,C5,1422 
9030 DATA D5,7E,23,A7,20,04,D1,C1,979 
9040 DATA F1,C9,FE,1B,28,05,CD,5A,1063 
9050 DATA BB,18,EE,46,23,E5,CD,06,994 
9060 DATA 72,EB,E1,10,F8,EB,18,E1,1322 
9070 DATA CD,00,72,1B,1A,54,68,65,661 
9080 DATA 20,63,6F,64,65,20,32,37,580 
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9090 DATA 20,61,6C,6C,6F,77,73,20,722 
9100 DATA 79,6F,75,20,74,6F,20,72,754 
9110 DATA 65,70,65,61,74,20,73,74,790 
9120 DATA 72,69,6E,67,73,00,00,C9,748 

If, having reached the end of this book, you are now itching to write your own 
machine code, you may be looking for an effective but reasonably 
straightforward project on which to cut your teeth. Using TBSTR, how many 
Teletext style screens do you think you could fit into your Amstrad? The 
screens could be used for many purposes — for example, skipping through 
like a 'shop window' type of advertising program. 
A further refinement would be a program which allowed you to edit and 
display the results of character code strings, define the order in which they are 
displayed, and allow different responses from the keyboard to dictate which 
screen is displayed next. The resulting program could well be used by 
non-programmers to produced programmed learning educational aids, or 
information display systems. 
Many computer books use literary quotations to punctuate their chapters. If, 
like us, you find this practice rather peculiar, perhaps you will nevertheless 
allow us just one with which to end our book; it is too apt for us to resist the 
temptation. 

These necromantic books are heavenly, 
Lines, circles, scenes, letters and characters: 
Ay, these are those that Faustus most desires. 
Oh, what a world of profit and delight, 
Of power, of honour, of omnipotence, 
Is promised to the studious artizan! 

Christopher Marlowe 
Doctor Faustus 1.1. 
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Z80 Instruction Set 

The mnemonics can be understoo d by reference to Chapter 1. The codes are 
given in hexadecimal, followed by the number of machine cycles the 
instruction requires for execution — in the case of two figures being given, the 
instruction is conditional and the first figure applies to the condition being 
met. 

ADC A,A 8F 4 ADD A,L 85 7 

ADC A,B 88 4 ADD A,data C6 dd 7 

ADC A,C 89 4 ADD A,(HL) 86 7 

ADC A,D 8A 4 ADD A,(IX+x) DD 86 xx 19 

ADC A,E 8B 4 ADD A,(IY+x) FD 86 xx 19 

ADC A,H 8C 4 ADD HL,BC 09 11 

ADC A,L 8D 4 ADD III., DE 19 11 

ADC A,data CE dd 7 ADD HL,HL 29 11 

ADC A,(HL) 8E 7 ADD IIL,SP 39 11 

AEC A,(IX+x) DD 8E xx 19 ADD IX,BC DD 09 15 

ADC A,(IY+x) FD 8E xx 19 ADD IX,DE DD 19 15 

ADC HL,BC ED 4A 15 ADD IX,IX DD 29 15 

ADC HL,DE ED 5A 15 ADD IX,SP DD 39 15 

ADC HL,HL ED 6A 15 ADD IY,BC FD 09 15 

ADC HL, SP ED 7A 15 ADD IY,DE FD 19 15 

ADD A,A 87 4 ADD IY,IY FD 29 15 

ADD A,B 80 4 ADD IY,SP FD 39 15 

ADD A,C 81 4 AilD A A7 4 

ADD A,D 82 4 AND B AO 4 

ADD A,E 83 4 AND. 0 Al 4 

ADD A,H 84 7 AND D A2 4 
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AND E A3 4 CALL Z,addr CC al ah 17/10 
AND H A4 4 CCF 3F 4 
AND L A5 4 CP A BF 4 
AND data E6 dd 7 CP B B8 4 
AND (HL) A6 7 CP C B9 4 
AND (IX+x) DD A6 xx 19 CP D BA 4 
AND (IY+x) FD A6 xx 19 CP E BB 4 
BIT 0,A CB 47 8 CP H BC 4 
BIT 0,B CB 40 8 CP L BD 4 
BIT 0,C CB 41 8 CP data FE dd 7 
BIT 0,D CB 42 8 CP (HL) BE 7 
BIT 0,E CB 43 8 CP (IX+x) DD BE xx 19 
BIT 0,H CB 44 8 CP (IY+x) FD BE xx 19 
BIT 0,L CB 45 8 CPD ED A9 16 
BIT 0,(HL) CB 46 12 CPDR ED B9 21/16 
BIT 0,(IX+x) DD CB xx 46 20 CPI ED Al 16 
BIT 0,(IY+x) FD CB xx 46 20 CPIR ED Si 21/16 

CPL 2F 4 
For other bit numbers, add the DAA 27 4 
following to the 2nd byte of the 
instruction (4th for the index DEC A 3D 4  
codes): DEC B 05 4 
BIT 1 +8 BIT 5 +28 DEC C OD 4 
BIT 2 +10 BIT 6 +30 DEC D 15 4 
BIT 3 +18 BIT 7 +38 DEC E 1D 4 
BIT 4 +20 DEC H 25 4 
CALL addr CD al ah 17 DEC L 2D 4 
CALL C,addr DC al ah 17/10 DEC (EL) 35 11 
CALL M,addr FC al ah 17/10 DEC (IX+x) DD 35 xx 23 
CALL NC,addr D4 al ah 17/10 DEC (IY+x) FD 35 xx 23 
CALL NZ,addr C4 al ah 17/10 DEC BC OB 6 
CALL P,addr F4 al ah 17/10 DEC DE 1B 6 
CALL PE,addr EC al ah 17/10 DEC EL 2B 6 
CALL PO.addr E4 al ah 17/10 
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DEC IX DD 2B 10 INC (IX+x) DD 34 xx 23 

DEC IY FD 2B 10 INC (IY+x) FD 34 xx 23 

DEC SP 3B 6 INC BC 03 6 

DI F3 4 INC DE 13 6 

DJNZ,dis 10 ds 13/8 INC HL 23 6 

EI FB 4 INC IX DD 23 10 

EX DE,HL EB 4 INC IY FD 23 10 

EX AF,AF' 08 4 INC SP 33 6 

EX (SP),HL E3 19 IND ED AA 16 

EX (SP),IX DD E3 23 INDR ED BA 21/16 

EX )SP),IY FD E3 23 INI ED A2 16 

EXX D9 4 INDIR ED B2 21/16 

HALT 76 4 JP addr C3 al ah 10 

IM 0 ED 46 8 JP C,addr DA al ah 10 

IM 1 ED 56 8 JP M,addr FA al ah 10 

IM 2 ED 5E 8 JP NC,addr.  D2 al ah 10 

IN A,(C) ED 78 12 JP NZ,addr C2 al ah 10 

IN B,(C) ED 40 12 JP P,addr F2 al ah 10 

IN C,(C) ED 48 12 JP PE,addr EA al ah 10 

IN D,(C) ED 50 12 JP PO,addr E2 al ah 10 

IN'E,(C) ED 58 12 JP Z,addr CA al ah 10 

IN H,(C) ED 60 12 JP (HL) E9 4 

IN L,(C) ED 68 12 JP (IX) DD E9 8 

IN A,(port) DB pt 11 JP (IY) FD E9 8 

INC A 3C 4 JR dis 18 ds 12 

INC B 04 4 JR C,dis 38 ds 12/7 

INC C OC 4 JR NC,dis 30 ds 12/7 

INC D 14 4 JR NZ,dis 20 ds 12/7 

INC E 1C 4 JR Z,dis 28 ds 12/7 

INC H 24 4 LD (addr),A 32 al ah 13 

INC L 2C 4 LD (addr),BC ED 43 al ah 20 

INC (HL) 34 11 LD (addr),DE ED 53 al ah 20 
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LD (addr),HL ED 63 al ah 20 LD A,(BC) OA 7 

LD (addr),HL 22 al ah 16 LD A,(DE) lA 7 

LD (addr),IX DD 22 al ah 20 LD A,(HL) 7E 7 

LD (addr),IY FD 22 al ah 20 LD,A,A 7F 4 

LD (addr),SP ED' 73 al ah 20 LD A,B 78 4 
LD (BC),A. 	02 7 LD A,C 79 4 
LD (DE),A 	12 7 LD A,D 7A 4 
LD (HL),A 	77 7 LD A,E 7B 4 

LD (IIL),B 	70 7 LD A,H 7C 4 
LD (HL),C 	71 7 LD A,I ED 57 9 

LD (HL),D 	72 7 LD A,L 7D 4 

LD (HL),E 	73 7 LD A,R ED 5F 9 

LD (HL),II 	74 7 LD A,data 3E dd 7 
LD (HL),L 	75 7 LD A,(IX+x) DD 7E xx 19 
LD (HL),data 36 dd 7 LD A,(IY+x) FD 7E 19 
LD (IX+x),A 	DD 77 xx 19 LD B,A 47 4 
LD (IX+x),B 	DD 70 xx 19 LD B,B 40 4 

LD (IX+x),C 	DD 71 xx 19 LD B,C 41 4 
LD (IX+x),D 	DD 72 xx 19 LD B,D 42 4 
LD (IX+x),E 	DD 73 xx 19 LD B,E 43 4 
LD (IX+x),H 	DD 74 xx 19 LD B,H 44 4 
LD (IX+x),L 	DD 75 xx 19 LD B,L 45 4 
LD (IX+x),dt DD 36 xx dd 19 LD B,data 06 dd 7 
LD (IY+x),A 	FD 77 xx 19 LD B,(HL) 46 7 

LD (IY+x),B 	FD 70 xx 19 LD B,(IX+x) DD 46 xx 19 
LD (IY+x),C 	FD 71 xx 19 LD B,(IY+x) FD 46 xx 19 
LD (IY+x),D 	FD 72 xx 19 LD BC,data 01 dl dh 10 
LD (IY+x),E 	FD 73 xx 19 LD BC,(addr) ED 4B al ah 20 

LD (IY+x),H 	FD 74 xx 19 LD C,A 4F 4 

LD (IY+x),L 	FD 75 xx 19 LD C,B 48 4 

LD (IY+x),dt FD 36 xx dd 19 LD C,C 49 4 
LD A,(addr) 	3A al ah 13 LD C,D 4A 4 
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LD C,E 4B 4 LD H,B 	60 4 

LD C,H 4C 4 LD H,C 	61 4 

LD C,L 4D 4 LD H,D 	62 4 

LD C,data OE dd 7 LD H,E 	63 4 

LD C,(HL) 4E 7 LD. H,H 	64 4 

LD C,(IX+x) DD 4E xx 19 LD H,L 	65 4 

LD C,(IY+x) FD 4E xx 19 LD H,data 	26 dd 7 

LD D,A 57 4 LD H,(HL) 	66 7 

LD D,B 50 4 LD H,(IX+x) 	DD 66 xx 19 
LD D,C 51 4 LD H,(IY+x) 	FD 66 xx 19 

LD D,D 52 4 LD HL,data 	21 dl dh 10 

LD D,E 53 4 LD HL,(addr) ED 6B al ah 21 

LD D,H 54 4 LD HL,(addr) 2A al ah 16 
LD D,L 55 4 LD I,A 	ED 47 9 

LD D,data 16 dd 4 LD IX,data 	DD 21 dl dh 14 

LD D,(HL) 56 7 LD IX,(addr) DD 2A al ah 20 

LD D,(IX+x) DD 56 xx 19 LD IY,data 	FD 21 dl dh 14 

LD D,(IY+x) FD 56 xx 19 LD IY,(addr) FD 2A al ah 20 

LD DE,data 11 dl dh 10 LD L,A 	6F 4 

LD DE,(addr) ED 5B al ah 20 LD L,B 	68 4 

LD E,A 5F 4 LD L,C 	69 4 

LD E,B 58 4 LD L,D 	6A 4 

LD E,C 59 4 LD L,E 	6B 4 

LD E,D 5A 4 LD L,H 	6C 4 

LD E,E 5B 4 LD L,L 	6D 4 

LD E,H 5C 4 LD L,data 	2E dd 7 

LD E,L 5D 4 LD L,(HL) 	6E 7 

LD E,data lE dd 7 LD L,(IX+x) 	DD 6E xx 19 

LD E,(HL) 5E 7 LD L,(IY+x) 	FD 6E xx 19 

LD E,(IX+x) DD 5E xx 19 LD R,A 	ED 4F 9 

LD E,(IY+x) FD 5E xx 19 LD SP,data 	31 dl dh 10 

LD H,A 67 4 LD SP,(addr) ED 7B al ah 20 
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LD SP,HL F9 6 POP AF Fl 10 

LD SP,IX DD F9 10 POP BC Cl 10 

LD SP,IY FD F9 10 POP DE D1 10 

LDD ED A8 16 POP HL El 10 

LDDR ED B8 21/16 POP IX DD El 14 

LDI ED AO 16 POP IY FD El 14 

LDIR ED BO 21/16 PUSH AF F5 11 

NEG ED 44 8 PUSH BC C5 11 

NOP 00 4 PUSH DE D5 11 

OR A B7 4 PUSH HL E5 11 

OR B BO 4 PUSH IX DD E5 15 

OR C Bl 4 PUSH IY FD E5 15 

OR D B2 4 RES 0,A CB 87 8 

OR E B3 4 RES 0,B CB 80 8 

OR H B4 4 RES 0,C CB 81 8 

OR L B5 4 RES 0,D CB 82 8 

OR data F6 dd 7 RES 0,E CB 83 8 

OR (HL) B6 7 RES 0,H CB 84 8 

OR (IX+x) DD B6 xx 19. RES 0,L CB 85 8 

OR (IY+x) FD B6 xx 19 RES 0,(HL) CB 86 15 

OTDR ED BB 21/16 RES 0,(IX+x) DD CB xx 86 23 

OTIR ED B3 21/16 RES 0,(IY+x) FD CB xx 86 23 

OUT (C) ,A ED 79 12 See BIT for information about how 
OUT (C) ,B ED 41 12 to calculate other bits. 

OUT (C),C ED 49 12 RET C9 10 

OUT (C),D ED 51 12 RET C D8 11/5 

OUT (C),E ED 59 12 RET M F8 11/5 

OUT (C),H ED 61 12 RET NC DO 11/5 

OUT (C),L ED 69 12 RET NZ CO 11/5 

OUT (port),A D3 pt 11 RET P FO 11/5 

OUTD 	ED AB 16 RET PE E8 11/5 

OUTI ED A3 16 RET PO EO 11/5 
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RET Z C8 11/5 RR L CB 1D 8 

RETI ED 4D 14 RR (HL) CB 1E 15 

RETN ED 45 14 RR (IX+x) DD CB xx 1E 23 

RL A CB 17 8 RR (IY+x) FD CB xx 1E 23 

RL B CB 10 8 RRA 1F 4 

RL C CB 11 8 RRC A CB OF 8 

RL D CB 12 8 RRC B CB 08 8 

RL E CB 13 8 RRC C CB 09 8 

RL H CB 14 8 RRC D CB OA 8 

RL L CB 15 8 RRC E CB OB 8 

RL (HL) CB 16 15 RRC H CB OC 8 

RL (IX+x) DD CB xx 16 23 RRC L CB OD 8 

RL (IY+x) FD CB xx 16 23 RRC (HL) CB OE 8 
RLA 17 4 RRC (IX+x) DD CB xx OE 23 

RLC A CB 07 8 RRC (IY+x) FD CB xx OE 23 

RLC B CB 00 8 RRCA OF 4 

RLC C CB 01 8 RRD ED 67 18 

RLC D CB 02 8 RST 0 (00) C7 11 

RLC E CB 03 8 RST 1 (08) CF 11 

RLC H CB 04 8 RST 2 (10) D7 11 

RLC L CB 05 8 RST 3 (18) DF 11 

RLC (HL) CB 06 15 RST 4 (20) E7 11 

RLC (IX+x) DD CB xx 06 23 RST 5 (28) EF 11 

RLC (IY+x) FD CB xx 06 23 RST 6 (30) F7 11 

RLCA 07 4 RST 7 (38) FF 11 

RLD ED 6F 18 SBC A,A 9F 4 

RR A  CB 1F 8 SBC A,B 98 4 

RR B CB 18 8 SBC A,C 99 4 

RR C CB 19 8 SBC A,D 9A 4 

RR D CB 1A 8 SBC A,E 9B .4 

RR E CB 1B 8 SBC A,H 9C 4 

RR H CB 1C 8' SBC A,L 9D 4 
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SBC A,data DE dd 7 SRA H CB 2C 8 

SBC A,(HL) 9E 7 SRA L CB 2D 8 

SBC A,(IX+x) DD 9E xx 19 SRA (HL) CB 2E 15 

SBC A,(IY+x) FD 9E xx 19 SRA (IX+x) DD CB xx 2E 23 

SCF 37 4 SRA (IY+x) FD CB xx 2E 23 

SET 0,A CB C7 8 SRL A CB 3F 8 

SET 0,B CB CO 8 SRL B CB 38 8 

SET 0,C CB Cl 8 SRL C CB 39 8 

SET 0,D CB C2 8 SRL D CB 3A 8 

SET 0,E CB C3 8 SRL E CB 3B 8 

SET 0,H CB C4 8 SRL H CB 3C 8 

SET 0,L CB C5 8 SRL L CB 3D 8 

SET 0,(HL) CB C6 15 SRL (HL) CB 3E 15 

SET 0,(IX+x) DD CB xx C6 23 SRL (IX+x) DD CB xx 3E 23 

SET 0,(IY+x) DD CB xx C6 23 SRL (IY+x) FD CB xx 3E 23 

See BIT for information about how SUB A 97 4 

to calculate other bits. SUB B 90 4 

SLA A CB 27 8 SUB C 91 4 

SLA B CB 20 8 SUB D 92 4 

SLA C CB 21 8 SUB E 93 4 

SLA D CB 22 8 SUB H 94 4 

SLA E CB 23 8 SUB L 95 4 

SLA II CB 24 8 SUB (HL) 96 7 

SLA L CB 25 8 SUB (IX+x) DD 96 xx 19 

SLA (HL) CB 26 15 SUB (IY+x) FD 96 xx 19 

SLA (IX+x) DD CB xx 26 23 XOR A AF 4 

SLA (IY+x) FD CB xx 26 23 XOR B A8 4 

SRA A CB 2F 8 XOR C A9 4 

SRA B CB 28 8 XOR D AA 4 

SRA C CB 29 8 XOR E AB 4 

SRA D CB 2A 8 XOR II AC 4 

SRA E CB 2B 8 XOR L AD 4 
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XOR data EE dd 7 XOR (IX+x) DD AE xx 19 

XOR (HL) AE 7 XOR (IY+x) FD AE xx 19 

xx= index register displacement value (2's complement). 
ds= relative jump value (2's complement). 
dd= data byte. 
al= low byte of address. 
ah= high byte of address. 
dl= low byte of 16-bit data. 
dh= high byte of 16-bit data. 
pt= port number. 
Note: the clock cycles are given for comparison purposes only, as the clock 
speed of the Amstrad is affected by the video generating process. 
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Hexadecimal, decimal and two's 
complement numbers 

Hex Dec Dec 2's 
comp. 

Hex Dec Dec 2's 
camp. 

Hex Dec Dec 2's 
camp. 

Hex Dec Dec 2's 
comp. 

00 0 +0 20 32 +32 40 64 +64 60 96 +96 
01 1 +1 21 33 +33 41 65 +65 61 97 +97 
02 2 +2 22 34 +34 42 66 +66 62 98 +98 
03 3 +3 23 35 +35 43 67 +67 63 99 +99 
04 4 +4 24 36 +36 44 68 +68 64 100 +100 
05 5 +5 25 37 +37 45 69 +69 65 101 +101 
06 6 +6 26 38 +38 46 70 +70 66 102 +102 
07 7 +7 27 39 +39 47 71 +71 67 103 +103 
08 8 +8 28 40 +40 48 72 +72 68 104 +104 
09 9 +9 29 41 +41 49 73 +73 69 105 +105 
OA 10 +10 2A 42 +42 4A 74 +74 6A 106 +106 
OB 11 +11 2B 43 +43 4B 75 +75 '6B 107 +107 
OC 12 +12 2C 44 +44 4C 76 +76 6C 108 +108 
OD 13 +13 2D 45 +45 4D 77 +77 6D 109 +109 
OE 14 +14 2E 46 +46 4E 78 +78 6E 110 +110 
OF 15 +15 2F 47 +47 4F 79 +79 6F 111 +111 
10 16 +16 30 48 +48 50 80 +80 70 112 +112 
11 17 +17 31 49 +49 51 81 +81 71 113 +113 
12 18 +18 32 50 +50 52 82 +82 72 114 +114 
13 19 +19 33 51 +51 53 83 +33 73 115 +115 
14 20 +20 34 52 +52 54 84 +84 74 116 +116 
15 21 +21 35 53 +53 55 85 +85 75 117 +117 
16 22 +22 36 54 +54 56 86 +86 76 118 +118 
17 23 +23 37 55 +55 57 37 +67 77 119 +119 
18 24 +24 38 56 +56 58 88 +88 78 120 +120 
19 25 +25 39 57 +57 59 89 +89 79 121 +121 
1A 26 +26 3A 58 +58 5A 90 +90 7A 122 +122 
1B 27 +27 38 59 +59 58 91 +91 7B 123 +123 
1C 28 +28 3C 60 +60 5C 92 +92 7C 124 +124 
1D 29 +29 3D 61 +61 5D 93 +93 7D 125 +125 
1E 30 +30 3E 62 +62 5E 94 +94 7E 126 +126 
1F 31 +31 3F 63 +63 5F 95 +95 7F 127 +127 
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Hex Dec Dec 2's 
comp. 

Hex Dec Dec 2's 
comp. 

Hex Dec Dec 2's 
comp. 

Hex Dec Dec 2's 
comp. 

80 128 -128 AO 160 -96 CO 	192 	-64 EO 	224 	-32 
81 129 -127 Al 161 -95 Cl 193 -63 El 225 -31 
82 130 -126 A2 162 -94 C2 194 -62 E2 226 -30 
83 131 -125 A3 163 -93 C3 195 -61 E3 227 -29 
84 132 -124 A4 164 -92 C4 196 -60 E4 228 -28 
85 133 -123 A5 165 -91 C5 197 -59 E5 229 -27 
86 134 -122 A6 166 -90 C6 198 -58 E6 230 -26 
87 135 -121 A7 167 -89 C7 199 -57 E7 231 -25 
88 136 -120 A8 168 -88 C8 200 -56 E8 232 -24 
89 137 -119 A9 169 -87 C9 201 -55 E9 233 -23 
8A 138 -118 AA 170 -86 CA 202 -54 EA 234 -22 
88 139 -117 AB 171 -85 CB 203 -53 EB 235 -21 
8C 140 -116 AC 172 -84 CC 204 -52 EC 236 -20 
8D 141 -115 AD 173 -83 CD 205 -51 ED 237 -19 
8E 142 -114 AE 174 -82 CE 206 -50 EE 238 -18 
OF 143 -113 AF 175 -31 CF 207 -49 EF 239 -17 
90 144 -112 BO 176 -80 DO 208 -43 FO 240 -16 
91 145 -111 81 177 -79 D1 209 -47 Fl 241 -15 
92 146 -110 B2 178 -78 D2 210 -46 F2 242 -14 
93 147 -109 83 179 -77 D3 211 -45 F3 243 -13 
94 148 -108 84 180 -76 D4 212 -44 F4 244 -12 
95 149 -107 85 181 -75 D5 213 -43 F5 245 -11 
96 150 -106 86 182 -74 D6 214 -42 F6 246 -10 
97 151 -105 37 183 -73 D7 215 -41 F7 247 -9 
98 152 -104 B8 184 -72 DO 216 -40 F8 248 -8 
99 153 -103 89 185 -71 D9 217 -39 F9 249 -7 
9A 154 -102 BA 186 -70 DA 218 -38 FA 250 -6 
98 155 -101 BB 187 -69 DB 219 -37 FB 251 -5 
9C 156 -100 BC 188 -68 DC 220 -36 FC 252 -4 
9D 157 -99 BD 189 -67 DD 221 -35 FD 253 -3 
9E 158 -98 BE 190 -66 DE 222 -34 FE 254 -2 
9F 159 -97 BF 191 -65 DF 223 -33 FF 255 -1 
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Index 

Accumulator (A register) 
ADC 
ADD 
Address bus 
Alternative register set 

10 
10 
10 

1, 3 
4, 5, 28 

Colours 
Comparisons 
Complement 
Conditional calls 
Conditional jumps 

109 
79 
11 
10 
9 

AND 11, 49, 122 Conditional returns 88,125 
Arithmetic 10 Control codes 23,128 
Arithmetic and logic unit 3, 4 Control unit 3,4 
Array descriptor blocks 68 Corruption 20,125 
Assembler programs 23 Counters 78 
Assembly 21 CP 12,21 
Auxiliary carry flag 5, 11, 13 CPD 15 
AY-3-8912 26 CPI 15 
Base co-ordinates 108 CPIR 15 
BASIC ROM 25 CPL 11 
Binary coded decimal (BCD) 5, 13 CPU 25 
Binary numbers 1, 98 CRT chip 26 
Binary searching 101 DAA 13 
Bit 12 Data bus 1,3 
Bits 1 Delayed replacement sort 43 
Block moves 14 Delays 126 
Bubble sort 34 Devpac 23 
Bytes 1 DI 16 
CALL 9, 17 Direct addressing 6 
CALL (BASIC) 40 Disassembly 23 
Caps lock simulation 87 Disk firmware routines 31 
Carry flag 4, 11,41,51,56 Displacements 5 
Cassette firmware routines 30 DJNZ 9,17,20 
CCF 11 Documentation 18,125 
Circle formula 91 Dynamic memory 5 
Clear 5 EI 16 
Clock 3, 26, 42 8-bit multiply 98 
Code loading routine 39 8255 chip 26 
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8080 CPU 4 LDDR 15 
Error reporting 124 LDI 14 
EX DE,HL 48 LDIR 14, 81 
Exchange instructions 8 Loading instructions 6 
Exponent 44 Logic 5 
False 5 Logical instructions 11 
Firmware ROM 25 Loops 9, 17, 36 
Firmware routines 27 Machine firmware routines 31 
Flags 4, 9 Mantissa 44 
Floating point numbers 43, 44 Manual assembly 21 
Flow diagrams 18 Masking 111 
Garbage collection 40, 87 Memory pointers 5, 6, 14, 20 
Gate array 25 Messages 127 
General purpose registers 4 Mnemonics 6 
Graphics firmware routines 99, 102 Monitor programs 23 
Halt 16 Multiplication 78, 98 
Hexadecimal numbering 2 NEG 11 
I/O instructions 15 NOP 16, 122 
I/O pin 13 Object code 21, 23 
Immediate addressing 6 Offsets 5, 22 
IN 14 Operation codes (op codes) 6 
INC 10 OR 11 
Index registers 5, 77, 84 Out 14 
Indexed addressing 24 Overflow 4 
Ink encoding 112 Overflow flag 5 
INPUT 18 Palette registers 109 
Instructions 6, Appendix 1 Parameter passing 40 
Integer variables 37, 40 Parity/overflow flag 5, 15 
Interrupt modes 16 Performing instructions 6 
Interrupt vector register 5 Physical co-ordinates 108 
Interrupts 16, 28 Pixel layout 108 
IX register 5 Plotting circles 91 
IY register 5 POP 8 
Joysticks 27, 29 Ports 26 
Jumpblock 27 PPI chip 26 
Kernel firmware routines 31, 122 Print co-ordinates 107 
Keyboard 18, 27 Printer routine 32 
Keyboard firmware routines 28, 88 Printing strings 127 
KM WAIT CHAR 20 Program counter 3, 6, 9 
Labels 20 Program jumps 8 
Latching 26 PSG chip 26 
LDD 14 PUSH 8, 42 
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INDEX 

RAM 
Random events 
Real numbers 
Recursion 
Redefining keys 
Refresh register 
Register pairs 
Registers 
Reiteration 
Relative graphic co-ordinates 

2,25 
6 

43 
129 
87 

5 
4 
3 

17 
108 

Sending data 
SET 
Set carry flag (SCF) 
Shell-Metzner sort 43, 
Shift 
Shifting bits 
Sign flag 
Signed numbers 2, 
6845 chip 
16-bit subtraction 

20 
5, 8 

8 
101 
12 
98 

5 
40 
26 
50 

Relative jumps 9, 21, 70 SLA 12 
Relocatable code 70 Sound 31 
Reset 5, 8 Source code 23 
Resident system extensions 119 Square roots 100 
Restarts 15, 27 SRA 13 
Restoring the SP 100 SRL 12 
RET 17 Stack operations 8 
RETN 16 Stack pointer 4, 7, 8 
Return address 128 Standard graphics co-ords 108 
Returning data 20 Storing code in strings 87 
RL 12 String comparisons 57 
RLC 12 String descriptors 53 
RLD 13 String printing 124 
ROM 2, 25, 27 Strings 53 
Rotate 12, 51 SUB 10 
RR 12 Subroutines 16, 124 
RRA 12 Subtract flag 4 
RRC 12 Testing for digits 69 
RRCA 12 Testing for zero 41 
RRD 13 Testing values 12 
RST See restarts Text firmware routines 29 
RSX 119 The code machine 23 
RSX tables 122 True 5 
SBC 10, 41 Two's complement 2, 7, 9, 50, 
Screen addresses 110 Appendix 2 
Screen base address 110 TXT OUTPUT 20 
Screen co-ordinates 107 Upper case characters 85, 87 
Screen firmware routines 29, 17 User graphics co-ordinates 108 
Screen layout 108 Variables 20, 24 
Screen modes 109 Vectoring 27 
Screen offset 111 Video display 26 
Self-modifying code 24 Video flyback 31 
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Video RAM 25, 108 XOR 11, 49, 51, 70, 117 
Waiting 127 Z80 1, 3 
Wild cards 73 Zero flag 5 
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Other titles from Sunshine 

ZX Spectrum Astronomy 
Maurice Gavin £6.95 
ISBN 0 946408 24 6 

Spectrum Adventures 
A guide to playing and writing adventures 
Tony Bridge & Roy Carnell £5.95 
ISBN 0 946408 07 6 

Spectrum Machine Code Applications 
David Laine £6.95 
ISBN 0 946408 17 3 

The Working Spectrum 
David Lawrence £5.95 
ISBN 0 946408 00 9 

Master your ZX Microdrive 
Andrew Pennell £6.95 
ISBN 0 946408 19 X 
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Mathematics for the Commodore 64 
Czes Kosniowski £5.95 
ISBN 0 946408 14 9 

Advanced Programming Techniques 
on the Commodore 64 
David Lawrence £5.95 
ISBN 0 946408 23 8 

Graphic Art for the Commodore 64 
Boris Allan £5.95 
ISBN 0 946408 15 7 

Commodore 64 Adventures 
Mike Grace £5.95 
ISBN 0 946408 11 4 

Business Applications for the Commodore 64 
James Hall £5.95 
ISBN 0 946408 12 2 



The Working Commodore 64 
David Lawrence £5.95 
ISBN 0 946408 02 5 

Commodore 64 Machine Code Master 
David Lawrence & Mark England £6.95 
ISBN 0 946408 05 X 

Graphic Art for the Electron 
Boris Allan £5.95 
ISBN 0 946408 20 3 

Programming for Education 
on the Electron Computer 
John Scriven & Patrick Hall £5.95 
ISBN 0 946408 21 1 

BB*  

Functional Forth for the BBC computer 
Boris Allan £5.95 
ISBN 0 946408 04 1 

Graphic Art for the BBC computer 
Boris Allan £5.95 
ISBN 0 946408 08 4 

DIY Robotics and Sensors for the BBC computer 
John Billingsley £6.95 
ISBN 0 946408 13 0 

Programming for Education on the BBC computer 
John Scriven & Patrick Hall £5.95 
ISBN 0 946408 10 6 
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